
PushMDQ implementation guidance
for federations

Introduction
The distribution of metadata is the key link that binds together identity federation both at the
national and international (inter-federation) level with eduGAIN. As the scale of federations
and inter-federations (eduGAIN membership) increases the dominant mechanism for sharing
metadata, based on the exchange of a flat file structure becomes problematic. Firstly from
the size of the file itself, and secondly from the associated processing delays and distribution
of any updates notifying entities of changes. This can have a potentially serious effect in the
case of compromise, where a considerable propagation delay can potentially leave a whole
federation vulnerable until it is detected. Note that this propagation delay issue is principally
relevant to both full mesh federations (which are the bulk of R&E federations) as well as hub
and spoke federation on the inter-federation level, though the latter may have alternate
distribution methods on a national level.

These issues can be ameliorated by the adoption of the more recent MDQ protocol which
allows for the query of metadata relating to one or more entities in a federation, thus
resulting in smaller amount of data transfer and potentially smaller propagation delays.
However, this approach suffers from both being a single point of failure (for the querying
entity) and from adopting a ‘pull-based’ model where the query is subject to deterministic
scheduling and thus cannot discover changes in real-time.

To address these issues a new mechanism -PushMDQ- has been proposed. The PushMDQ
model leverages existing metadata exchange components, but enhances these with the
ability to inform stakeholders about changes in almost real time fashion.
The model is based on a publisher - subscriber model known as websub (formerly
PubSubHubbub). Websub was originally intended for data feeds such as RSS or ATOM, but
can be applied more generally.
Briefly, a publisher of information (in this case metadata) publishes information to a hub to
which interested parties can subscribe to and receive notifications from when new content is
available. Hence a subscriber (in this case a federation, or an entity within a federation) can
receive instant notification when an update to metadata has occurred and this can
(potentially) be propagated across the federation (or federations in the case of eduGAIN)
with minimal delay.
We’ve now explained the PUSH, part of PushMDQ, so what about the MDQ part?
With the ability to instantly notify stakeholders of changes, we now gain the ability to also
instantly update entity information in the federation metadata. While the proposal is taking
into account the flat file metadata exchange, and is believed to be compatible with that
model for backwards compatibility, another big improvement can be made by broad adoption

of MDQ technology by federations. The use of MDQ would enable the almost instant
publication of new entity information into the metadata more easily and will also enable much
smaller, and hence faster updates to entity metadata.

There are a number of benefits to such a system:

● The model does not require modifications to the existing trust model in R&E
federations.

● Changing from deterministic pull to a push mechanism reduces pulls by up to 95%;
● Updates can be propagated to all entities instantly (for practical purposes);
● Combining the use of MDQ with PushMDQ reduces the processing overhead even

further;
● Backwards compatibility with existing flat-file distribution is possible;
● There is no longer a single point of failure;
● Websub hubs do not need to be intelligent and may exist outside the federation.

However, to maximise the benefits a number of operational and implementation best
practices should be implemented. These could be staged over time in order to ensure a
smooth transition and minimise disruption and burden on federation resources. By doing so
incremental improvements could be realised until full adoption can be accomplished.

This overview describes a proposal to the implementation steps to move towards an
adoption of the pushMDQ model for metadata exchange.

Operational and implementation guidance

Use of flat file structure and MDQ
The aim of the use of PushMDQ protocol within eduGAIN is to reduce the time for an entity
change in the federation metadata to propagate from the originating federation to all
federations within eduGAIN. At the same time the current proposal seeks to maintain
backwards compatibility with the bulk of federations that currently use a flat file exchange
rather than MDQ (thus allowing the possibility of a per entity exchange. In general the
propagation time is the result of a number of factors:

1. The time taken for a federation to become aware that a change has taken place;
2. The time taken for batch processing and publication of the XML metadata
3. The time at which batch processing is scheduled
4. The time taken for a federation to update its cache based on cache-duration. Note:

This can be accelerated to some extent by using an appropriate http conditional
request (precondition header).

5. The expiration of the metadata as given by the ValidUntil attribute.

Using the websub mechanism of PushMDQ the notification (1) from the eduGAIN hub is
effectively instantaneous. However the subscribing federation wishing to obtain the updated
XML metadata needs to wait for the publishing federation to process the xml data from it’s
entities (2) and publish this to eduGAIN hub for aggregation, which is generally done at
specific times (3). Hence continued use of a flat file structure to propagate XML metadata
changes removes some of the benefits of using PushMDQ, although since federation ‘pulls’
of the flat file are driven by websub notifications, rather than cache duration timeouts this still
improves efficiency by eliminating redundant ‘uniformed pulls’ and moving to a ‘notification
pull’ model. The maximum benefit of using PushMDQ whilst still using a flat file structure
depends on the batch processing delays of other federations within eduGAIN.

To fully maximise the benefits of using PushMDQ the subscribing federation should
ideally adopt the use of MDQ in order to query the changes related to specific entities.

In this case the publishing federation needs only to inform the eduGAIN hub of changed
entities whose metadata can then be queried using MDQ and aggregated and the
subscribing federation (once notified) is able to query specific changes using MDQ. This
greatly reduces the processing delay by the publishing federation, and to some extent the
processing delay at the subscriber (although this is less significant). Although, even in this
case the total processing time is dependent on the MDQ batch processing by the publishing
entity and in general federations don’t pull and process all metadata when notified of a single
change.
Best performance will be obtained when both publishing and subscribing entities use
MDQ.

Processing of change notifications
To minimise the processing time, publishing federations should pull all changes
(whether they aggregate a flat file or MDQ) when a threshold of change is notified
from its federated entities​. This threshold needs to be set such that there is a balance
between the improved propagation time of having updated metadata published frequently by
the federation and the increased processing related to a higher number of pulls.
Similarly subscribing federations should always pull metadata (either flat file or MDQ)
when an eduGAIN hub notification is received.​ Note: In general federations are both
publishers and subscribers.
The ultimate solution to this problem is to extend the PushMDQ protocol down within
federations to the individual entities, but this would require a change to every SP and IdP
and so is something that would need to be phased in over time.
In addition a similar benefit could be had when the federation would publish its metadata via
MDQ where the updated frequency as well as the cache timeout of the entities in the
federation would be low

Trust mechanism for endpoints
The trust model for endpoints, either entities or federations, does not change with PushMDQ
proposal as at no point in time the Websub part of PushMDQ publishes actual updates on
entities. PushMQD only publishes information on the fact a given entity has changed, and
refers to the relevant metadata endpoint to learn about the update.
There are however some technical ways to implement better security in the message
exchange between hub and subscriber described in the protocol, which seem logical
additions, and hence are recommended.

Resilience
Since a hub can fail and this will result in notifications potentially being missed or received
out of order by subscribers a mechanism is needed in order to provide resilience and handle
the case where multiple hubs are sending notifications.
As a first precaution, many federation policies already dictate a minimal refresh time for the
metadata, like e.g. 6 hours for eduGAIN. Federations and entities should keep such minimal
refresh criteria and use them to update in case no notification was received at all within the
agreed timeframe. This would mitigate a total failure of a hub, and in fact represent the
current state of affairs without PushMDQ.

On top of that a number of technical measure can be taken to:

● A subscriber may subscribe to multiple hubs and where this is used to improve
resilience a synchronisation mechanism needs to be in place so the data served by
the hubs is identical. This can be accomplished by a combination of database
virtualization, clustering and mirroring.

● Federations should consider the provision of multiple hubs that provide the
same synchronized notifications or a single hub with a failover mechanism (the
exact mechanism needs more study and may vary between federations
depending on their existing architecture).

● Root publishers should add a timestamp or some other form of sequence number
when notifying the hub of the availability of new content. This can then be used by
the subscriber in the notification callback message to ensure that content is not
delivered out of order.

Hub notification time out and back-off mechanism
The subscriber should respond to metadata update notifications from the hub as quickly as
possible. Where this does not happen (for example) if the subscriber is busy with other
processing) the hub will retry the update request for a given period before giving up. This
could cause large quantities of update requests to occur where the subscriber cannot
respond quickly enough to prevent the hub backing-off and retrying the content distribution
request.

Federations could ensure that publishers do not send entity notifications after an
aggregated entity notification, if there have been no changes. (this needs further
consideration).
It is recommended the subscribers implement a proper mechanism to cache update
requests so response to the hub can be done in a timely fashion.

