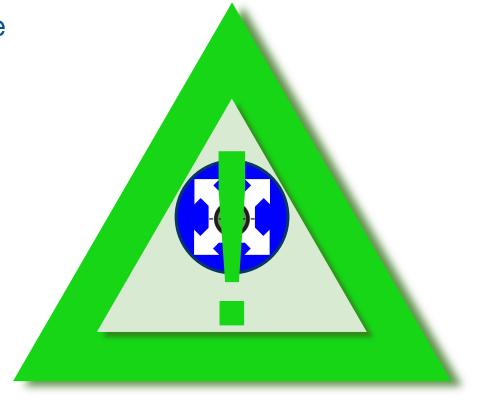

perfS-NAR

Background and History


- Core network 100GE
- Many campus 10GE and 1GE links
- SR and LR fiber links
- 10GE testing for campus backbone and gateways
- Static perfSONAR testpoints on server-class rackmount hardware in data centers
- Inconsistent departmental perfSONAR deployments
- Service Degradation reports

Disclaimers

- perfSONAR does not endorse or promote any hardware platform or vendor
- Lessons and techniques covered in this talk are anecdotal: YMMV
- If you break it, you've bought both pieces

History: Dell R330

Physical Specifications:

- 1U server, 4 post rack
- 1.7" x 17" x 26.7"
- 30 lbs / 14kg
- 2 x 1GE & 1GE OOB Management
- 2 x SFP+
- Optional Dual Power Supplies
- Powerful Cooling Fans (loud)
- ~\$2,700 without optics

Good for semi-permanent data center deployments

Not great:

- On a professor's desk
- Basement of a 100 year old campus building

Need for Portability

Portable Requirements:

- Form Factor (Size / Weight)
- Cost
- 10GE Networking
- 1GE Networking
- perfSONAR Supported OS:
 - CentOS 7 or Ubuntu 18

Portable Niceties:

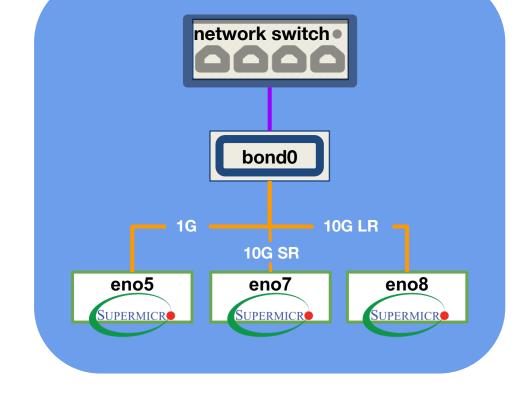
- OOB Management
- PoE
- Optional Rack Mount
- Expandability
- x86

SuperMicro E300-8D Specs

- 10" x 9" x 1.7"
- 7.5 lbs. / 3.4 kg
- 2 x SFP+
- 6 x 1GE
- 1GE OOB Management Port
- Intel Xeon D-1518 (4 core @ 2.2GHz)
- 8GB RAM
- 500GB NVMe M.2 SSD
- Optional 2 Post Rack Ears
- ~\$900 without optics
- PCI-E Expansion options:
 - 4 x 1GE
 - 4 x SFP+
 - 2 x 10GE R45
 - 2 x 25GE

SuperMicro Bootstrapping

- Crash cart (VGA, USB keyboard)
- Firmware settings (UEFI for NVMe)
- OOB Management (IPMI)
- Install OS
- Configure network
- Install perfSONAR with Ansible
- perfSONAR limits file (optional)



Network Interface Bonding

- Bonding allows each interface to share a single network configuration for IP Addr, Gateway, etc. (Active/backup)
- Simplified field deployment for 1GE, 10GE SR, and 10GE LR
- Lab testing to verify performance expectations

Network Interface Bonding

А	1GE OOB Management
D	DHCP for lab provisioning
	BONDED 1GE
J	BONDED 10GE SR
K	BONDED 10GE LR

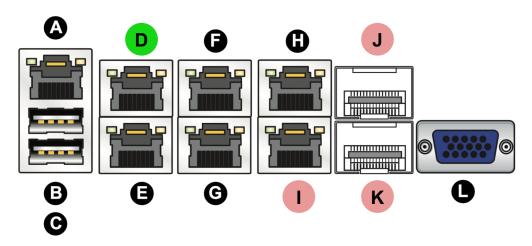


Figure 3-1. Rear Input/Output Ports

Rear Panel I/O						
A. IPMI LAN	E. LAN Port 1	I. LAN Port 5				
B. USB Port 1	F. LAN Port 4	J. LAN Port 8 (SFP+)				
C. USB Port 0	G. LAN Port 3	K. LAN Port 7 (SFP+)				
D. LAN Port 2	H. LAN Port 6	L. VGA Port				

Subnet Config /29

- Dual Homed DL support
- /29 vs /30
- Troubleshooting verify the connectivity inside VLAN
- Support for dual testpoint field deployments
- Flexibility

M	
INFORMATION AND TECHNOLOGY SERVICES	
UNIVERSITY OF MICHIGAN	

/29 Subnet IP Usage				
Network	192.168.0.0/29			
Gateway	192.168.0.1			
DL1	192.168.0.2			
DL2	192.168.0.3			
Testpoint A	192.168.0.4			
Testpoint B	192.168.0.5			
Extra	192.168.0.6			
Broadcast	192.168.0.7			

Subnet Config /29

Spreadsheet Template

Test Network	Subnet	Net Name	Testpoint A	Testpoint B
141.213.137.72	29	V-PERF-TEST-PAIR-1	perf-test-pair-1-a	perf-test-pair-1-b
141.213.137.80	29	V-PERF-TEST-PAIR-2	perf-test-pair-2-a	perf-test-pair-2-b

IPMI Network	Subnet	IPMI Net Name	IPMI A	IPMI B
10.224.54.72	29	V-PERF-TEST-IPMI-PAIR-1	perf-test-ipmi-pair-1-a	perf-test-ipmi-pair-1-b
10.224.54.80	29	V-PERF-TEST-IPMI-PAIR-2	perf-test-ipmi-pair-2-a	perf-test-ipmi-pair-2-b

Test Procedure: Bastion Host & Testpoint

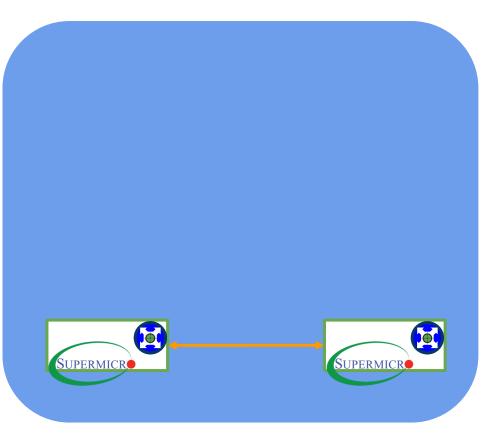
- Build VLAN network @ test site
- Stretch VLAN to ports you're testing through
- Plug in the equipment, power up test hardware
- 4. Ping device from network
- 5. Log on to trusted pScheduler host
- Run your test!


```
INFORMATION AND TECHNOLOGY SERVICES
UNIVERSITY OF MICHIGAN
```

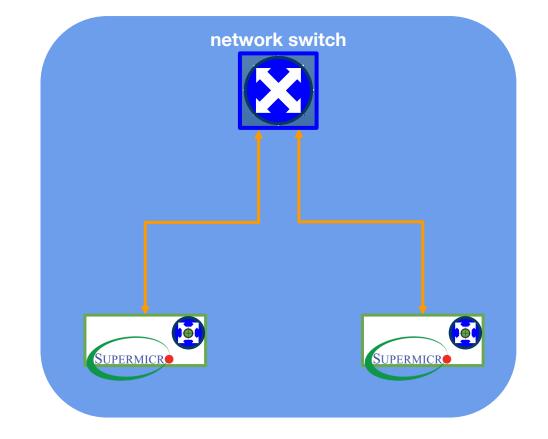
```
[epcjr@its-perfsonar-bastion mobile_demo]$ pscheduler task \
  throughput \
    --source 141.213.137.100 \
    --dest 141.213.137.101
Submitting task...
Task URL:
https://141.213.137.100/pscheduler/tasks/85c9f6dd-e0b2-4120-9
Running with tool 'iperf3'
Fetching first run...
Next scheduled run:
https://141.213.137.100/pscheduler/tasks/85c9f6dd-e0b2-4120-9
ns/09bd4d3f-4e6d-46b7-b874-95bdc9a86076
Starts 2020-10-02T12:21:49-04 (~6 seconds)
      2020-10-02T12:22:08-04 (~18 seconds)
Waiting for result...
* Stream ID 5
Interval
               Throughput
                              Retransmits
                                              Current Window
0.0 - 1.0
               9.93 Gbps
                                             1.97 MBvtes
1.0 - 2.0
               9.90 Gbps
                                             1.97 MBytes
2.0 - 3.0
               9.91 Gbps
                                             1.97 MBytes
3.0 - 4.0
               9.90 Gbps
                                             1.97 MBytes
4.0 - 5.0
               9.91 Gbps
                                             2.21 MBytes
               9.90 Gbps
                                             2.21 MBytes
5.0 - 6.0
6.0 - 7.0
               9.91 Gbps
                                             1.12 MBytes
               9.90 Gbps
7.0 - 8.0
                                             1.04 MBytes
               9.90 Gbps
                                             1.08 MBvtes
8.0 - 9.0
9.0 - 10.0
               9.91 Gbps
                                             942.24 KBvtes
Summarv
               Throughput
                              Retransmits
Interval
0.0 - 10.0
               9.91 Gbps
No further runs scheduled.
[epcjr@its-perfsonar-bastion mobile_demo]$
```

Initial Field Deployment: End-to-End Testing - Verify Problem Exists

- Testpoint A using same fiber cabling as user
- Testpoint B in same data center rack as server
- Tests ran from user test to various permanent, temporary PerfSonar boxes
- All had issues!

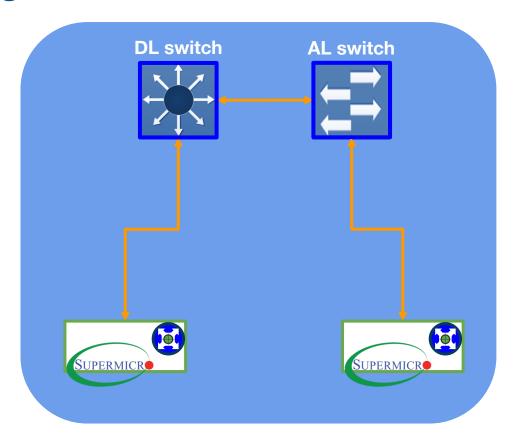


Test Procedure: Benchmark Test Lab Equipment

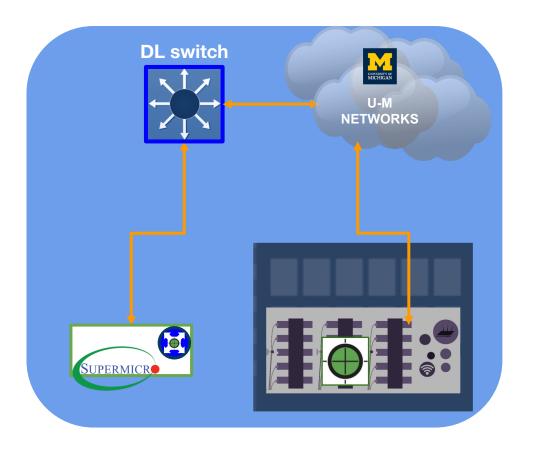

- Lessons: done in a lab before the field deployment verify that SM can actually hit 1G and 10G throughput goals connected back to back
- Configuration (IP address, cabling)
- Results / score

Test Procedure: UMnet Testing - Pilot Shortest Loop

- Testing equipment always on the same network
- Allows to stay on switch, test a fresh, new, unboxed switch



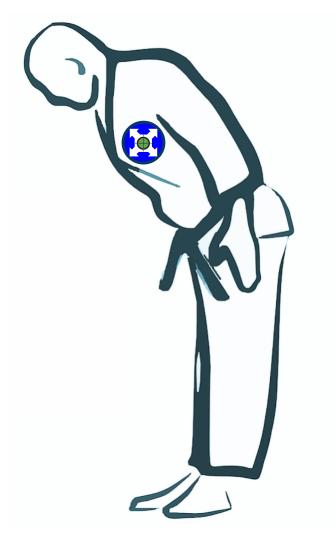
Test Procedure: Test Larger Segments


- Allows testing cabling, hardware, without leaving to core.
- Allows permanent install that can be tested against
- Same or different network testing options

Test Procedure: Entire Network

- From DL to permanent
 PerfSonar installations
- Allows core testing
- Limitations: speeds availability - core is 100gb

Credits and Resource Links


Credits:

- Jeff Hagley
- Ajay Nautiyal
- Katarina Thomas
- Marlin Whitaker

Resources:

- pScheduler command and CentOS
 Interface Bonding
- perfSONAR Ansible Playbook
- perfSONAR Limits Tutorial
- SuperMicro E300-8D
- Deployment Template

