Pyff+ Optimizations
and mock metadata

Mihaly Héder

\ l /
ST& (R)”
INCU BATORQ

pyFF+ original aims

e Context:

o When processing the eduGAIN metadata, pyFF’s
m memory usage balloons to the gigabytes,
m hereby inflicting some extra cost when running
m same with other SAML stacks

www.geant.org

\ l /
. L
INCUBATORQ

pyFF+ original aims

e Original Goals
o An investigation of memory consumption
o Finding potential memory hot spots
o If there are hot spots, solutions are planned and implemented
o pyFF is split into multiple modules to externalize
the metadata processing
o New implementation is committed to the official repository

www.geant.org

|
INCUBATORQ

pyFF+ hacking experiments

\ l /
UST &1 ()
INCUBATORQ

Experiments made

e Memory profiling
o heapy way: import and code usage of using heapy to print heap
information while running python code.
m https://pkacore.readthedocs.io/en/latest/dev-notes/heapy.html
o top/htop way:
m following RES in top or htop for a long-running pyFF/gunicorn process, that
has a 60s refresh interval

e all while loading edugain.xml

www.geant.org

https://pkgcore.readthedocs.io/en/latest/dev-notes/heapy.html

\ l /
& o .\
INCUBATORQ

Experiments made

e Un/Pickling etree.ElementTree object

e I|dea: process once, then distribute

o externally parsed etree.ElementTree objects can be pickled (serialized)
to be consumed later in pyFF, without the need to parse.

www.geant.org

import xml.sax
class XML(xml.sax.handler.ContentHandler):
def __init_ (self):
self.current = etree.Element("root")

L
self.nsmap = { "xml': 'http://www.w3.0rg/XML/1998/namespace'}
Xperiments made

def startElement(self, name, attrs):
attributes = {}
for key, value in attrs.items():
key = key.split(':")

e Rewriting to SAX parsing

if key[@] == 'xmlns':

from DOM self.nsmap[key[-1]] = value
else:

attributes[f"{{{ self.nsmap.get(key[0], key[©]) }}}{ key[-1] }"] = value

e The idea is to switch from
recursive processing to B e

name = f"{{{ self.nsmap.get(name[@], name[©]) }}}{ name[-1] }"

sequential e

self.current = etree.SubElement(self.current, name, attributes, nsmap=self.nsmap)

[] This code uses the event based xml.sax parser to create def endelement(self, name):
B H H self.current.text = self.buffer
an etree.ElementTree object for pyFF, inside pyFF. b e
self.current = self.current.getparent()

® The parsing could be brought outside of pyFF to create a self.buffer = '’

dictionary type of object to be read and parsed as a def characters(self, data):

metadata representation to create the ElementTree d = data.strip()

. . . . if d:
object in pyFF instead of parsing XML. e e d

def parse_xml(io, base_url=None):
parser = xml.sax.make_parser()
handler = XML()
parser.setContentHandler (handler)
parser.parse(io)
return etree.ElementTree(handler.current[0])

\ l /
ST& ()
INCU BATORQ

Experiments made

e Run pyFF in a uwsgi server
o Long-run test reveals comparable memory usage as gunicorn, but there
seem to be more knobs to play with.

o One of the things we can do against boundless growth of uwsgi is the use of --reload-on-rss <limit>, this kills any work
that exceeds the RSS limit, but results in an empty metadata reply, which is unwanted behaviour. If however, we also
supply --lazy, the app is loaded in the worker(s) and the (re)start of each worker then also triggers the reload of
metadata. This could be a compromise if the VM is less cpu bound than memory?

bin/uwsgi \
--http 127.0.0.1:8080 \
--module pyff.wsgi \
--callable app \
--enable-threads \
--env PYFF_PIPELINE=edugain.yaml \
--env PYFF_WORKER_POOL_SIZE=10 \
--env PYFF_UPDATE_FREQUENCY=60 \
--env PYFF_LOGGING=pyFFplus/examples/debug.ini www.geant.org

\ l /
UST &1 ()
INCUBATORQ

Experiments made

e Empty Metadata set while refreshing

- Itturns out pyFF returns an empty metadata set while refreshing, which is unwanted
behaviour. The following code, inserted just before the final return in .api#process_handler
inspects the validity of the Resource metadata. Having a loadbalancer inspect pyFF and
temporarily evicting the server from pool if it receives a 500 could create a stable service.

def process_handler():

Only return request if md is valid?
valid = True
log.debug(f"Resource walk")
for child in request.registry.md.rm.walk():
log.debug(f"Resource {child.url}")
valid = valid and child.is_valid()

if len(request.registry.md.rm) == @ or not valid:
log.debug(f"Resource not valid")
500: The server has either erred or is incapable of performing the requested operation.
raise exc.exception_response(500)

else:

log.debug(f"Resource valid")

www.geant.or
return response g g

\ l /
e
Experiments made Unpacking pyFF+ resource loading model

www.geant.org

\ l /
e
Experiments made Unpacking pyFF+ resource loading model

Creates an mk app

www.geant.org

\ l /
e
Experiments made Unpacking pyFF+ resource loading model

Wsgqi

v |
o

www.geant.org

\ l /
e
Experiments made Unpacking pyFF+ resource loading model

Wsgqi

Md

Th itory i
en a repository is created Check /src/pyffimd.py line

34

www.geant.org

\ l /
e
Experiments made Unpacking pyFF+ resource loading model

Wsgqi

o

Repositor
y

-

www.geant.org

\ l /
INCUEATORQ
Experiments made Unpacking pyFF+ resource loading model

Wsgqi

o

Repositor
y

-

At this point a resource is created and a watcher Check src/pyff/repo.py line 13

A

www.geant.org

\ l /
e
Experiments made Unpacking pyFF+ resource loading model

Wsgqi

y

www.geant.org

\ l /
e
Experiments made Unpacking pyFF+ resource loading model

Wsgqi

@D
Next is the creation of the Fetcher
Repositor src/pyff/resource.py line 18, 33
y

www.geant.org

\ l /
e
Experiments made Unpacking pyFF+ resource loading model

Wsgqi
EAD

www.geant.org

\ l /
INCUEATORQ
Experiments made Unpacking pyFF+ resource loading model

Wsgqi
EAD
Here is the creation of the important
request,response
Repositor R Eotch Check init of the class Fetch
y esource eteher line 21 at src/pyff/fetch.py

www.geant.org

\ l /
'RUST &1 T o %
_ INCU BATORQ
Experiments made Unpacking pyFF+ resource loading model
If the queue that is being tracked is not empty, there will be

Wsgqi
an attempt to fetch the url from the queue
Md Check line 36 of fetch.py

www.geant.org

\ l /
INCUEATORQ
Experiments made Unpacking pyFF+ resource loading model

Wsgqi
EAD

If the attempt is successful the fetched data
will be stored in the Resource

www.geant.org

\ l /
IN‘C}UEATORQ
Experiments made Unpacking pyFF+ resource loading model

e

Repositor
y

www.geant.org

\ l /
ST& (R)”
INCU BATORQ

Other actions taken

e Interview with Leif

o central theme: python XML processing is a lackluster

o Ways forward
m pyff (for batch only)+thiss.io usage (eduTEAMs way)
m reimplementation (GO?)

www.geant.org

|
INCUBATORQ

Mock Metadata Experiments

\ l /
ST& (R)”
INCU BATORQ

Mock metadata

e |dea:
o generate big metadata files that resemble eduGAIN XML but larger
o sign

e Details

o 10,15,30,50,100k entities
o 300k names, 300k email, 300k domains, 300k certificates generated
o We do idp/sps (no AA) '

www.geant.org

Alternative outcome: Mock metadata test suite

\ l /
TRUST & IDEN \) oo
INCUBATORQ

Test |Entities XML flesize (MB) Size as compare to eduGAIN
set

10k 10.000 48 1.38

15k 15.000 74 .1 297

30k 30.000 148 3.76

50k 50 .000 242 6.9

100k | 100.000 484 13.8

www.geant.org

pyFF

[RUST & IDENT

INCUBATOI

Mock Size Memory |Time Errors, Anomalies, Notes
(% of 4 |(s)
Gb)

10k 12 9

15k 22 12

30k 40 18

50k 98 30

100k - - The process exits

code=killed. Out of
memory

www.geant.org

10

Shibboleth SP

Mock Size Memory |Time Errors, Anomalies,
(% of 4 |(s) Notes
Gb)

10k 9 4

15k 22 7

30k 44 12

50k 72 17

100k - - “Cannot allocate

memory”

|,
INCUBATOR Q

www.geant.org

Shibboleth IdP

Mock Size Memory |Time (s) |Errors, Anomalies,
(% of Notes
4 Gb)
10k 30 18
15k 39 25
30k 72 39
50k 94 66 Increased Java heapsize
100k - - “OpenJDK 64-Bit Server

VM warning: INFO:
os::commit_memory(0x000
00067900000,
115343360, 0) failed;
error="Not enough
space' (errno=12)"

INCU BAT

www.geant.org

1
|

A0

simpleSAMLphp

Mock Size Memory | Time (s) [Errors, Anomalies,
(% of Notes
4 Gb)

10k 13 55

15k 20 93

30k 1 99

50k 69 328

100k - - mmap () failed: [12]

Cannot allocate memory

mmap() failed: [12]
Cannot allocate memory
PHP Fatal error: Out of
memory (allocated
2141122560) (tried to
allocate 8192 bytes) in
/var/simplesamlphp/lib/
SimpleSAML /Metadata/SAM
LParser.php on line 166

INCU BAT

www.geant.org

1
|

A0

Comparison chart: RAM

\

Y
TRUST&IDENTITY ()
L)

Memory usage hen loading XML metadata
== pyFF == Shibboleth SP Shibholeth IdP == SimpleSAMLphp
100
yA

75

50

25

0

10 15 30 50 100
Size (k entities)

\

Y
TRUST&IDENTITY ()
L)

Comparison chart: Time

Processing duration when loading XML metadata
== pyFF == Shibboleth SP Shibboleth IdP == SimpleSAMLphp

400

300
y
£
= 200
£
2
8
o
a 100

. e ———————
10 15 30 50 100
number of entities { x1000)

. L
INCU BATORQ

Mock XML conclusion & possible road ahead

e Things are not great

e future investigations: what is the issue

m Nno. of entities?
m no. of XML elements?
m some combination?

e mock XML should resemble the real thing even more
o entity attributes
o extensions
o etc.

e Reportis being wrapped up

www.geant.org

\ l /
. L
INCUBATORQ

Overall conclusion

e No real theoretical reason for the XML processing to be this

way (apart from Verification)
o But it would require a total rewrite to make improvements (for pyFF at

least: get rid of elementTree)
e XML DSig is not helping
o since it requires c14n and this needs to be done recursively
o part of the XML
o because of the InfoSet

e Needs to be on the radar of everyone

www.geant.org

Thank you!

Questions?

