
Pyff+ Optimizations 
and mock metadata

Mihály Héder



pyFF+ original aims

● Context:
○ When processing the eduGAIN metadata, pyFF’s

■ memory usage balloons to the gigabytes, 
■ hereby inflicting some extra cost when running
■ same with other SAML stacks



pyFF+ original aims

● Original Goals
○ An investigation of memory consumption
○ Finding potential memory hot spots
○ If there are hot spots, solutions are planned and implemented
○ pyFF is split into multiple modules to externalize 

the metadata processing
○ New implementation is committed to the official repository



pyFF+ hacking experiments



Experiments made

● Memory profiling
○ heapy way: import and code usage of using heapy to print heap 

information while running python code.
■ https://pkgcore.readthedocs.io/en/latest/dev-notes/heapy.html

○ top/htop way:
■ following RES in top or htop for a long-running pyFF/gunicorn process, that 

has a 60s refresh interval

● all while loading edugain.xml

https://pkgcore.readthedocs.io/en/latest/dev-notes/heapy.html


Experiments made

● Un/Pickling etree.ElementTree object
● Idea: process once, then distribute

○ externally parsed etree.ElementTree objects can be pickled (serialized) 
to be consumed later in pyFF, without the need to parse.



Experiments made

● Rewriting to SAX parsing 
from DOM

● The idea is to switch from 
recursive processing to 
sequential

● This code uses the event based xml.sax parser to create 
an etree.ElementTree object for pyFF, inside pyFF. 

● The parsing could be brought outside of pyFF to create a 
dictionary type of object to be read and parsed as a 
metadata representation to create the ElementTree 
object in pyFF instead of parsing XML.



Experiments made

● Run pyFF in a uwsgi server
○ Long-run test reveals comparable memory usage as gunicorn, but there 

seem to be more knobs to play with.
○ One of the things we can do against boundless growth of uwsgi is the use of --reload-on-rss <limit>, this kills any worker 

that exceeds the RSS limit, but results in an empty metadata reply, which is unwanted behaviour. If however, we also 
supply --lazy, the app is loaded in the worker(s) and the (re)start of each worker then also triggers the reload of 
metadata. This could be a compromise if the VM is less cpu bound than memory?



Experiments made

● Empty Metadata set while refreshing
○ It turns out pyFF returns an empty metadata set while refreshing, which is unwanted 

behaviour. The following code, inserted just before the final return in .api#process_handler 
inspects the validity of the Resource metadata. Having a loadbalancer inspect pyFF and 
temporarily evicting the server from pool if it receives a 500 could create a stable service.



Wsgi

Experiments made Unpacking pyFF+ resource loading model



Wsgi

Creates an mk app

Experiments made Unpacking pyFF+ resource loading model



Wsgi

Md

Experiments made Unpacking pyFF+ resource loading model



Wsgi

Md

Then a repository is created
Check /src/pyff/md.py line 
34

Experiments made Unpacking pyFF+ resource loading model



Wsgi

Md

Repositor
y

Experiments made Unpacking pyFF+ resource loading model



Wsgi

Md

Repositor
y

At this point a resource is created and a watcher Check src/pyff/repo.py line 13

Experiments made Unpacking pyFF+ resource loading model



Wsgi

Md

Repositor
y Resource

Experiments made Unpacking pyFF+ resource loading model



Wsgi

Md

Repositor
y Resource

Next is the creation of the Fetcher

src/pyff/resource.py line 18, 33

Experiments made Unpacking pyFF+ resource loading model



Wsgi

Md

Repositor
y Resource Fetcher

Experiments made Unpacking pyFF+ resource loading model



Wsgi

Md

Repositor
y Resource Fetcher

Here is the creation of the important 
request,response

Check init of the class Fetch 
line 21 at src/pyff/fetch.py

Experiments made Unpacking pyFF+ resource loading model



Wsgi

Md

Repositor
y Resource Fetcher

If the queue that is being tracked is not empty, there will be 
an attempt to fetch the url from the queue

Check line 36 of fetch.py

Experiments made Unpacking pyFF+ resource loading model



Wsgi

Md

Repositor
y Resource Fetcher

If the attempt is successful the fetched data 
will be stored in the Resource

Experiments made Unpacking pyFF+ resource loading model



Wsgi

Md

Repositor
y Resource Fetcher

Experiments made Unpacking pyFF+ resource loading model



Other actions taken

● Interview with Leif
○ central theme: python XML processing is a lackluster
○ Ways forward

■ pyff (for batch only)+thiss.io usage (eduTEAMs way)
■ reimplementation (GO?)



Mock Metadata Experiments



Mock metadata

● Idea: 
○ generate big metadata files that resemble eduGAIN XML but larger
○ sign

● Details
○ 10,15,30,50,100k entities
○ 300k names, 300k email, 300k domains, 300k certificates generated
○ We do idp/sps (no AA)



Alternative outcome: Mock metadata test suite



pyFF



Shibboleth SP



Shibboleth IdP



simpleSAMLphp



Comparison chart: RAM



Comparison chart: Time



Mock XML conclusion & possible road ahead

● Things are not great
● future investigations: what is the issue

■ no. of entities?
■ no. of XML elements?
■ some combination?

● mock XML should resemble the real thing even more
○ entity attributes
○ extensions
○ etc.

● Report is being wrapped up



Overall conclusion

● No real theoretical reason for the XML processing to be this 
way (apart from Verification)
○ But it would require a total rewrite to make improvements (for pyFF at 

least: get rid of elementTree)
● XML DSig is not helping

○ since it requires c14n and this needs to be done recursively
○ part of the XML 
○ because of the InfoSet

● Needs to be on the radar of everyone



Thank you!
Questions?


