AdaDoQ: Adaptive DNSSEC

Yehuda Afek Tel-Aviv University

Anat Bremler-Barr Reichman University

Daniel Dubnikov Tel-Aviv University

Motivation

- DNSSEC is important
- DNS with DNSSEC does not scale, specifically,
 - → Vulnerable to NXDomain flood attacks

Goal

- 1. To measure DNSSEC scalability relative to Plain DNS
- Develop a method for <resolver ← → authoritative> collaboration that is
 (a) Scalable, (b) as secure as DNSSEC, and (c) introduces no new
 vulnerabilities.
 - a. Provides the same security level as DNSSEC, and
 - b. Provides performances close to that of Plain-DNS, and
 - c. Does not enable new vulnerabilities.

Outline

- Motivation: DNSSEC under NXDomain flood attack
 - Either slow or Zone walking vulnerability
- AdaDoQ: solution:
 - TCP/TLS
 - DNSSEC PKI hierarchy of trust
 - QUIC
- AdaDoQ performances
- Conclusions

With DNSSEC

	Max Queries Per Second		
Plain DNS	23,524		
DNSSEC: NSEC	9,510		
DNSSEC: NSEC3	8,989		

fake.example.com ??

NX-DOMAIN

fake.example.com Recursive

Empty cache

Empty cache

Resolver

Under NXDomain attack

NXDomain Attack RANDOM DNS Request Flood

Resolvers

Rxy1xhggsgVCER.sony.com

XVBY\$&HGDRxy2.sony.com

FJH*^DHGAKRxy3.sony.com

RxUYQVMNLKAy4.sony.com

Motivation (1) NSEC aggressive caching

Non Existent query in DNSSEC?

Motivation (2)

- Non Existent query in DNSSEC?
- Query: ddd.name.com?

Motivation (2) - NSEC record

 Non Existent in DNSSEC? Query: ddd.name.com? Index.NAME.COM - Mail.NAME.COM • **NSEC** Record: Nothing exists in-between

Query: Junk.NAME.COM

Motivation (2) NSEC aggressive caching

• Aggressive Caching (RFC 8198) – stops NX Attack

	Max Queries Per Second
Plain DNS	23,524
DNSSEC: NSEC	9,510
DNSSEC: NSEC3	8,989
Aggressive Caching	Max Queries Per Second
DNSSEC: NSEC	96,226
DNSSEC: NSEC3	93,756

Motivation (2) NSEC aggressive caching

• Aggressive Caching (RFC 8198) – stops NX Attack

	Max Queries Per Second
Plain DNS	23,524
DNSSEC: NSEC	9,510
DNSSEC: NSEC3	8,989
Aggressive Caching	Max Queries Per Second
DNSSEC: NSEC	96,226
DNSSEC: NSEC3	93,756

Motivation (3) Zone walking

- Aggressive Caching (RFC 8198) stops NX Attack
- BUT: Enables Zone Walking

Index.NAME.COM - Mail.NAME.COM

	Max Queries Per Second		
Plain DNS	23,524		
DNSSEC: NSEC	9,510		
DNSSEC: NSEC3	8,989		
Aggressive Caching	Max Queries Per Second		
DNSSEC: NSEC	96,226		
DNSSEC: NSEC3	93,756		

Motivation (3) Zone walking

• Aggressive Caching (RFC 8198) – stops NX Attack

BUT: Enables Zone Walking

Scalability Issues: Need to quickly find NSEC record

	Max Queries Per Second		
Plain DNS	23,524		
DNSSEC: NSEC	9,510		
DNSSEC: NSEC3	8,989		
Aggressive Caching	Max Queries Per Second		
DNSSEC: NSEC	96,226		
DNSSEC: NSEC3	93,756		

Motivation (3) Zone walking

How to stop Zone Walking?

Motivation (3) NSEC3 and Zone walking

How to stop Zone Walking?

- NSEC3 hash of the interval (the domain names)
 - Keep the hash function on both sides.
 - Aggressive caching still works. Zone walking is harder, But
 - Still can do Zone Walking with dictionary attack:
 An attacker collects all the NSEC3 records, and uses dictionary attack to reveal the true domain-names

Motivation (3) stop Zone walking by Black/White lies

• You can't (without online signing*, Goldberg et al.)

Query: Junk.NAME.COM

Nsec5: Provably preventing dnssec zone enumeration

Motivation (4)

Online Signing Algorithms – NX Attacks Amplified

	Max Queries Per Second	% of Plain DNS
Plain DNS	23,524	100%
DNSSEC: NSEC	9,510	40%
DNSSEC: NSEC3	8,989	38%
DNSSEC: White Lies	5,863	25%
DNSSEC: Black Lies	7,206	30%
DNSSEC: NSEC5	6,324	27%

Motivation (4)

- Online Signing Algorithms NX Attacks Amplified
- For security and scalability reasons online signing might be the only option

	Max Queries Per Second	% of Plain DNS
Plain DNS	23,524	100%
DNSSEC: NSEC	9,510	40%
DNSSEC: NSEC3	8,989	38%
DNSSEC: White Lies	5,863	25%
DNSSEC: Black Lies	7,206	30%
DNSSEC: NSEC5	6,324	27%

Proposed Solution - Hybrid

- Authoritative authenticates the resolver once
 - Following traffic is sent without DNSSEC signatures and is considered validated

Proposed Solution (1)

- Remove all DNSSEC overheads
 - Packet Size + extra packet (NSEC record)
 - CPU Load

Proposed Solution (1) TLS

- Remove all DNSSEC overheads
 - Packet Size + Count
 - CPU Load

- Use TLS
 - Resolver initiates
 - Authoritative identifies itself once,
 - Traffic sent with Plain DNS over TLS.
 - Using **DNSSEC hierarchical chain of trust ** instead of TLS certificates.
 - TLS == DNSSEC: Only owner of DNSSEC key can authenticate information

Proposed Solution – PoC (1) Proxy

• **Problem1:** Can't easily integrate with known resolver/auth implementations (Bind, Unbound, Knot, etc.)

Solution: proxy interface resolver - authoritative servers

Proposed Solution – PoC (2) QUIC

• Problem2:

- TLS overhead is high
- TLS suffers from Head-of-Line blocking

Proposed Solution – PoC (2) QUIC

Problem2:

- TLS overhead is high
- TLS suffers from Head-of-Line blocking
- **Solution:** Use **QUIC** (similar to HTTP3)
 - Over UDP
 - UDP Multiplexing (virtual connections) → No head of the Line Blocking
 - Connection kept open: resume connection with 0 round trip time
 - No need for TCP integration (firewalls/IPS)
 - At most one QUIC connection for each Resolver-Authoritative pair.

QUIC anti-spoofing protection

Proposed Solution – PoC (3)

• **Problem3**: Teardown and restart QUIC connections

Proposed Solution – PoC (3) Long lived

- Problem3: Teardown and restart QUIC connections
- Solution: Keep connections alive
 - QUIC has low overhead long lived connections
 - QUIC can resume quickly

Proposed Solution – PoC (4)

• Problem4: Resource limit

Proposed Solution — PoC (4) Limit # QUIC Connections

- Problem4: Resource limit
- Solution: Score connection throughput with

Exponential Moving Average

- → Resolver terminates lowest scored connection (LRU)
- \rightarrow Close connection when F_i is below a lower threshold

Proposed Solution – PoC (5) Attack Tolerance

- **Problem5:** Estimate impact of resource exhaustive attacks
- Still need to preform measurement. However:
- → Over UDP instead of TCP
- → Resolver terminates lowest scored connection (LRU).
- → Threshold for closing connection lower than opening threshold

Proposed Solution – PoC (6) No DNSSEC validation

• Problem6: Clients cannot validate DNSSEC signatures.

→ Trust the resolver.

Measurements

Knot	Max Queries Per Second	% of Plain DNS	ECDSA P-256
Plain DNS	23,524	100%	
DNSSEC: NSEC	9,510	40%	4,213
DNSSEC: NSEC3	8,989	38%	4,015
DNSSEC: White Lies	5,863	25%	2,070
DNSSEC: Black Lies	7,206	30%	3,338
DNSSEC: NSEC5	6,324	27%	2,171

Measurements

With QUIC, using the same experiment (NX flood), throughput is 87% of the plain DNS

Knot	Max Queries Per Second	% of Plain DNS	ECDSA P-256
Plain DNS	23,524	100%	
DNSSEC: NSEC	9,510	40%	4,213
DNSSEC: NSEC3	8,989	38%	4,015
DNSSEC: White Lies	5,863	25%	2,070
DNSSEC: Black Lies	7,206	30%	3,338
DNSSEC: NSEC5	6,324	27%	2,171
AdaDoQ (Our Solution)	20,558	87%	

Conclusions

- DNSSEC degrades DNS performance
 - Make NXDOMAIN attacks worse (DDoS amplification)
- AdaDoQ Hybrid Solution
 - Light and fast connections
 - One time encryption overheads
 - No Security Compromises
 - No Zone Walking
 - Close to Plain DNS throughput
 - No Scalability Issues

Questions?