
perfSONAR is developed by a partnership of

A New Architecture for Streaming
Measurements with pScheduler

©2022 The perfSONAR Project and its Contributors ・ Licensed CC BY-SA 4.0 ・ https://www.perfsonar.net

Mark Feit・ Internet2 / The perfSONAR Development Team・ mfeit@internet2.edu
Third European perfSONAR User Workshop ・ May, 2022

mailto:mfeit@internet2.edu

Advanced Material

• Material covered in this
presentation is not
necessary for everyday
use of perfSONAR.

• This is pScheduler “inside
baseball.”

2

Image: MetaNest, CC-BY-SA 3.0

Disclaimer

Features described in this talk are
being considered for a release that
may happen sometime later than

today.

None of it exists… yet.
3

Streaming Measurements

• Some problem-causing events are transient.
• Continuous throughput is expensive
• Is the network there for test or user traffic?

• Some measurements can be done continuously.
• Latency and loss are low-bandwidth

4

Hint, Hint: Implied Problems

• Packet loss on
longer links means
loss of throughput
on TCP streams.

• Is this throughput
measurement
really necessary?

• Probably not. Find
and fix the loss.

5

Single-Measurement Resource Consumption

• Thread pScheduler Runner service

• Process pScheduler tool plugin run method

• Process Measurement tool (ping, iperf3)

6

Powstream

• Part of the OWAMP family

• Continuous measurements (Latency / Loss /Jitter)

• Aggregates multiple measurements into a single
result
• Optional per-packet data

7

No Such Thing as a Free Lunch Measurement

• Running Powstream consumes more resources:

• Two processes to conduct the measurement.

• Process run periodically by tool plugin to convert
results into something usable.

• Total: Thread + 4 processes + Itinerant Process

8

It Sounds Worse Than it Is

• Many copies of the same programs running at
the same time

• Shared code and data pages

9

Large-Scale Applications

10

~ 18.2M
Measurements

per day. From Shawn
McKee’s 2021
perfSONAR Day
presentation.

4.x Threading Architecture

11

Runner
Thread 1

Thread 2

…

Thread n

Run Method 1

Run Method 2

Run Method n

Strangled by the Python

• Python was selected for pScheduler because
it’s well-understood within the user
community.

• It has threads but is effectively single-core
because of the Global Interpreter Lock (GIL).

12

New Threading Architecture in 5.0

• The GIL limits the number of usable threads.

• Work delegated to child processes

• Relatively-small number of threads per child. (20)

• Takes better advantage of more cores when available.

13

New Threading Architecture

14

Runner
Pool Thread 1

Pool Thread 2

…
Pool Thread n

Pool Process 1

Pool Process 2

Pool Process n

Worker Threads

Worker Threads

Pool Process Management

• Pool processes create worker threads per job.

• Distribution of jobs favors a lower number of pool processes.

• Idle processes go away.

• Pools can have a limited lifetime
• E.g., 10,000 jobs and that’s it
• Prevents problems caused by memory leaks

15

Solving the Powstream Problem

16

How’s that again?

• Resource consumption

• New applications that want a real-time stream of
individual measurements
• One-minute, aggregated granularity with optional

individual packet data isn’t good enough.

• Powstream was never designed with either in
mind.

17

Conventional Measurement

18

Runner

Worker 1
powstream
Tool Plugin
Run Method

Powstream

Worker 2
powstream
Tool Plugin
Run Method

Powstream

New Concept: Unsupervised Measurements

• Variation on tool plugin. Runs measurements independently.
• New start method establishes a long-term, multi-result

measurement with an external service.
• Provides information about where to post results
• Authentication key

• Service sends results directly into pScheduler via the API.
• Lacks conventional measurement’s persistent run method.
• New check method in plugin called to check the measurement

• Re-establishes if not.

19

pSlam: pS Latency Measurement Service

• Takes the place of Powstream
• Does measurements as directed

• Architecture takes advantage of better threading
• Avoids Python’s pitfalls

20

Front End (Python)

REST API
(Python + Flask)

Workload Management
(Python)

pSlam: pS Latency Measurement Service

21

pScheduler

Thread Runner (C)
Measurement Thread (C)

[OT]WAMP
Functions (C)

JSON Library TBD (C)

LibcURL (C)

Finished Measurements

Tasking
via Tool
Plugin

Thread
Control

pSlam: How do we get there?

• Isolate OWAMP/TWAMP measurement functions from the
reference implementations.

• Make them callable as utilities
• Change pScheduler support unsupervised measurements
• Develop measurement thread and thread runner
• Develop front end
• Develop pScheduler tool plugin
• Retire Powstream

22

🥳

When?

• Most of this talk encompasses the basic design.

• Isolation of [OT]WAMP functions is already underway at ESnet.

• Development of everything else starts this summer.

• Look for this in 5.1 or 5.2.
• Other fish to fry

23

More Disclaimers

• pScheduler is not suitable for every streaming application

• 5.0 will be better at handling high volumes than 4.x.
• We don’t know how much better yet.

• Direct-to-archive makes sense in some cases:
• Very-high volume
• Ultra-low latency demands
• No need for pScheduler’s post-processing or archive flexibility

24

Thanks!
Email:

mfeit@internet2.edu

For more information,
please visit our web site:

https://www.perfsonar.net

©2020 The perfSONAR Project and its Contributors ・ Licensed CC BY-SA 4.0 ・ https://www.perfsonar.net

Thanks icon by priyanka from The Noun Project

mailto:mfeit@internet2.edu
https://www.perfsonar.net/

