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Introduction

Internet from space is becoming a viable reality

SpaceX, Amazon, Telesat are/will be deploying low earth orbit
(LEO) satellite constellations

... competing with/complementing terrestrial networks
1000s of satellites in multiple orbital shells and planes per shell

Inter-satellite and ground station to satellite links

US

UNIVERSITY
OF SUSSEX



LEO Satellite Deployments

shell h (km) Orbits Sats/orbit i

S1 550 72 22 53°
S2 1,110 32 50 53.8°
Starlink S3 1,130 8 50 74°
S4 1,275 5 75 81°
S5 1,325 6 75 70°
K1 630 34 34 51.9°
Kuiper K2 610 36 36 42°
K3 590 28 28 33°
T1 1,015 27 13 98.98°
Telesat 1y 395 40 33 50.88°

from S. Kassing, et al., Exploring the "Internet from space" with Hypatia, in Proc of IMC '20
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Starlink Deployment

https://satellitemap.space
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Starlink Deployment
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[LEO Satellite Network Characteristics

« Aggregate bandwidth in the order of hundreds of Tbps
« comparable to today’s aggregate fibre capacity
 Path multiplicity

* Sub-10ms round-trip time between Earth and first-hop

satellite

* Low end-to-end latency - can be smaller than best theoretical

fibre path can support
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Network Dynamics

Large mesh-networks - deterministic mobility

One orbit per ~100 minutes

GS-satellite links change

Shortest paths (latency-wise) change constantly even

when core is ISL only
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Network Dynamics

rtt: 0.02181 s
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Challenges in Data Transport

Non-congestive latency variation

Multiple paths that change over time — packet reordering

Hotspots (shortest-path routing on mesh networks)

Fluctuating bandwidth
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Simulation Framework

A. Valentine and G. Parisis, Developing and experimenting with LEO satellite constellations in
OMNeT++, In Proc. of the 8th OMNeT++ Community Summit Conference, 2021

 OMNEeT++/INET — widely used packet-level simulator
» Open-Source Satellite Simulator - OS3 — accurate satellite mobility
* Models for satellite network nodes, ISL connectivity
» Routing
» extended the IP layer model to use IP addresses as satellite identifiers

« shortest-path calculation using Dijkstra’s algorithm

« 2D and 3D visualisations (using OpenSceneGraph and osgEarth)

source code: https://github.com/Avian688/leosatellites
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https://github.com/Avian688/leosatellites

Simulation Framework

A. Valentine and G. Parisis, Developing and experimenting with LEO satellite constellations in
OMNeT++, In Proc. of the 8th OMNeT++ Community Summit Conference, 2021

source code: https://github.com/Avian688/leosatellites
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https://github.com/Avian688/leosatellites

Accuracy and Scalability

Round Trip Times for different frequencies of mobility and SP calculation
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(a) 1 Second Granularity - (b) 5 Second Granularity - (c) 10 Second Granularity - (d) 15 Second Granularity
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Accuracy and Scalability

Execution time for different topology sizes - 300 simulated seconds

Granularity Scalability
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Non-Congestive Latency Variation

London - New York
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Non-Congestive Latency Variation

Seattle - Miami
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Loss- and Delay-based Data Transport

round trip time congestion window size
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Kuiper constellation - shell K1, 1156 satellites, 630km altitude, 34 orbital planes,
34 satellites per plane, 51.90 inclination, 10Mbps link speed, 100 packet buffers
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Loss- and Delay-based Data Transport

Duplicate acknowledgements
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Receiver-Driven Data Transport

 Inspired by data centre network research (NDP, SCDP)

« Sender pushes initial window of packets --> receiver pulls

packets upon receiving initial window
 Pull requests are paced

« Packets are sprayed over k-edge-disjoint paths
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Receiver-Driven Data Transport

symbol packet | header | pull request
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Receiver-Driven Data Transport

symbol packet | header | pull request
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Congestion Control

« DC approaches do not need/support congestion control
 assume specific topology/pace based on incoming link capacity)
* not appropriate for a LEO satellite network

e Varying Hop Goodput
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Congestion Control

ST R1

l ,

SW1 ~(SW2 R2
t

L 1=

S2| | S3| |S4| [S5

Shared Bottleneck

20.5

S
O 0.1+

N W =100 WEE IW =800
BN TW =200 HEEE TW = 1600
N W =400 NN IW = 3200

US

UNIVERSITY
OF SUSSEX

1

2 3 4
Transport Session

5




Congestion Control
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Current Work

« In-network signals for efficient delay-based congestion control
« RaptorQ) codes for multicast and multisource communication

» Reinforcement Learning for congestion control in

receiver-driven data transport
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