

Microsoft Entra verified ID

Verifiable Credentials, Microsoft style
TF-DLT, Sept 19, 2022

Peter Clijsters, Martin van Es, Niels van Dijk
SURF

MS VC’s -Why

● VC issuence & verification capabiliteis are now
part of Azure/Entra

● Many institutions have Azure in place already
● Can we leverage existing (Federated) AAI?
● Can we integrate incoming credentials?

MS VC’s – Agenda

● How does it work?
● What are the requirements?
● What standards are involved?
● How is trust established?
● Findings and Conclusions?

MS VC’s -Demo

W3C verifiable credential model

WALLET

ISSUER

VDR

MS VC’s - Requirements

● Azure tennant both for Issuers as well as Verifier
● Activate key storage and XYZ
● Issuer and/or verifier client lib (python/.net/java)
● Microsoft Authenticator

MS VC’s - Configuration

● SHOW AZURE backend

MS VC’s - Standards

● OIDC
● SIOP
● DID:WEB
● DID:ION

MS VC’s – Trust
● In the DID:Web implementation trust is established based

on DNS, domain ownership and publishing .well-known file
● Azure as well as MS authenticator validate
● For DID:ION, Azure (and hence Microsoft) interacts with the

VDR. It is at this point unknown if one can independently
valdidate transactions against the ION ledger

● Relation between Issuer/Verifier client and Azure backend
API is based on client key/secret

● Additional trust, beyond technical, is not possible except via
credential issuace

MS VC’s – Findings
● Setup of Issuer or Verifier is super easy (< 1 hour)
● VC implementation does not in any way make use of

backend AAI storage like Azure AD; all credentials must be
presented to the API. Azure is only used as a ‘token
translation’ proxy.

● In DID:ION implementation Azure also interacts with the
ledger (the wallet does not)

● No selective release of credentials by user, only the entire
presentation can be released

● Each issuer and verifier must have its own Azure tennant

MS VC’s – Conclusions
● Implementation is very tightly locked into the MS

ecosystem, not only technically, but also from the trust
perspective

● Verifier Azure tennant requirement is potential barrier
● Privacy and scalability of VC release looks challanging
● No controle over Credential usage by users
● Given that Azure already has federation capabilities, the

only clear benefit of verifiedID seems to be that it does not
need upfront trust establisment.

● No integrated provisioning path for Verifier

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

