

Outline

- Introduction
- CERN Cloud service
 - Deployment
 - Monitoring
 - Accounting
 - Identity
 - Probe and Debug

European Organization for Nuclear Research

- World largest particle physics laboratory
- Founded in 1954
- 23 member states
- Fundamental research in physics

and RUN3 has just started ...

CERN Cloud Infrastructure

- Infrastructure as a Service
- Production since July 2013
- CentOS 7 based (adding CentOS Stream 8 soon)
 - Based on RDO
- Geneva Computer centre (adding a new DC)
- Highly scalable architecture
 - 48 cells on 5 regions
- Currently running Stein* release
 - Some services already in Xena release

~ Openstack services statistics

Users 3382		Projects 4586		Loadbalancer	s	Images 4360	Volumes 7329	Volumes si 3.78 PB	File Shares 5079	File Shares 1.39 PB	Object Stor 476	Object Stor 63.1 TB
Servers				Cores			RAM			Batch		
Physical 9112	Physical in use 8820	/ 1	Virtual 3674	Physical 486 K	Hyperviso 58.3 k		Physical 2.02 PB	Hypervisors 379 TB	Virtual 205 TB	Servers 5199	Cores 281291	RAM 1.07 PB

Time series

Initial offering

laaS+

laaS

User Visible

CERN Cloud Infrastructure - now

Service deployment

- From shared to "per service" architecture
 - Break dependencies between services
 - Some shared components (rabbitmq, loadbalancers, caches)
 - Freedom to update components under the same API/RPC version
- All deployed in VMs on our own infrastructure: "eat our own dogfood"
 - Bootstrap procedure and recovery methods
- Puppet managed running on CentOS 7 (hypervisors) and CentOS Stream 8 (services)

Service operations

- Deployment upgraded since July 2013
- Per-service upgrade model (A/B or in place)
- Compute + Storage availability zones (3 zones each)
- Huge investment on automation:
 - Delegate as much as possible administrative tasks (repair team, quota mgmt, end-user)
 - Detect and fix known issues
 - User communication
- Quite some big campaigns:
 - KVM consolidation, Spectre/Meltdown and L1TF, Cold Migration

Cloud Monitoring

- Use same monitoring pipeline as any other IT service
 - Metrics (Collectd => InfluxDB)
 - Logs (Flume => Kafka => ES, HDFS)
- Custom sensors for VM monitoring, service metrics
- Threshold based alarming on individual nodes
- Per-service grafana dashboards

Find the needle in the haystack

- Threshold based alarming on extreme cases
- Anomaly detection to find misbehaving nodes

Cloud Accounting

- All resources grouped by project
 - chargegroup & chargerole
- Producers data
 - VM stats sensor in all HVs
 - Metrics from OpenStack DBs
- Stored in InfluxDB
- Aggregated by Kapacitor
- Exported to Service Costing

Identity management

- Available to all CERN Users
 - On-demand provision of resources to federation users (based on group membership)
- Types of projects (owned by a CERN primary account)

	Affiliation Expired	User Disabled	User Deletion
Shared	Promote	-	-
Personal	-	Stop	Delete

Provisioning and cleanup in Mistral workflows (inter-dependency handling)

Resource management for end user

REQUEST NEW PROJECT

Security approach

- TLS everywhere (Regular check on TLS security level on endpoints)
- DoS protection on Load Balancers
- 2FA for Administrative operations
- Follow up CVEs on openstack/virtualisation packages with local backports
- Standard vs Audit notifications
- CERN Security team analyses network traffic and controls external firewall
 - Granted additional permissions to stop/lock user VMs
 - Network Isolate any VM/physical node

Cloud Probing

- Use Rally as automated probe system
- Focus on infrastructure wide issues

Debugging

- Stateless vs Stateful services
 - Focus on reproducing issue
- Use of dedicated "testing" regions
 - Route user requests to extremely verbose setup
 - Connected to other production services
- Probing on Testing Regions
 - Validate minor/major upgrades
 - Introduce feedback with more user scenarios

Thank you

More info:

https://computing-blog.web.cern.ch/

All our **open source** code is available on:

https://gitlab.cern.ch/cloud-infrastructure

Thank to the work of my team colleagues

BACKUP SLIDES

Optimize resource availability - Expiration

- Each VM in a personal project has an expiration date
- Set shortly after creation and evaluated daily
- Configured to 180 days and renewable
- Reminder mails starting 30 days before expiration
- Implemented on a Workbook in Mistral

Task delegation

- Rely on Rundeck for offloading tasks to different teams
 - Repair Team
 - Resource coordinator
 - Cloud operations

• Example: disk replacement

Why baremetal provisioning?

- VMs not sensible/suitable for all of our use cases
 - Storage nodes, HPC clusters, Batch nodes
- Complete our service offering
 - Physical nodes (in addition to VMs and containers)
 - OpenStack as single pane of glass
- Simplify hardware provisioning workflows
- Consolidate accounting & bookkeeping
 - Machine re-assignments will be easier to track

HW lifecycle at CERN

Ironic Service setup and status

