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What is streaming data?

• For the purposes of this talk streaming data is:
－Data that is generated continuously by many data sources, which typically send data 

records simultaneously in a time ordered sequence
－Data that needs to be processed sequentially and incrementally on a record-by-record basis 

or over sliding time windows and used for a wide variety of analytics including correlations, 
aggregations, filtering, and sampling
－Data that is typically considered to be “in motion” from a source through various processing 

stages
－Data that typically has some time sensitivity or criticality requiring prompt processing

• To prevent backup as new data arrives
• To steer the data source
• To respond to events in real-time

• Streaming data formats typically have a metadata wrapper for each record that contains
－Data type, data source, position of the record in the stream
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Bound an unbound data streams

• A bound data stream is finite stream where each record is well defined and the same format
－ Typically Bound data has a known ending point
－ A data taking run for an experiment is a bound stream of data
－ A YouTube clip is a bound stream of video frames

• Unbound data is unpredictable, infinite, and not always sequential
－ Example continuous monitoring of an instrument looking for rare events

• There is no concept of a run, the duration is effectively infinite
• The events occur at random
• The events can be of randomly varying size. Event A could take longer to acquire or process than event B and so the order in the

stream becomes B then A where the order of occurrence was A then B

• An unbound stream of bounded streams is possible (binge watching YouTube)

• How does this data type fit into existing computing models? Is something different needed?
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Current dominant data processing model for experimental science

• Data is acquired by online workflows and processed by offline workflows
－These are usually decoupled with significant time period between acquisition and processing

• Between online and offline data is stored in a hierarchical storage system, typically files in a 
Posix filesystem

• The batch processing model dominates offline data processing, it relies on the need to 
repetitively process many thousands of files of data
－Typically, a workflow manager retrieves files from storage and queues up batch jobs to process 

them
－Jobs are managed by a batch system (SLURM) and executed when resources become available

• Advantages are
－Automation of workflows – launch processing of thousands of files
－Simplicity – each job is relatively independent of its peers
－Efficient use of resources – jobs run when resources are available. 
－Assigning a range of priorities can keep a cluster busy without impact on high priority jobs

• Does this model fit streaming data? Statement: Batch processing is not a good fit
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Scenario 1 – Write it to a file and sort it out later

• In this scenario the data streams terminate in a process that writes 
the records into one or more files

• Simple to set up but hard to manage and optimize if there are many 
parallel streams
－One stream per file gives parallelism but potentially lots of small files
－Aggregate streams and write all data to the same file, potential 

bottlenecks
－What does a file represent? – varies by use case

• Unit of time?
• Unit of data?

－How to handle cases where data spans file boundaries?
－File management – what deletes files so that the storage doesn’t fill?
－Batch system starts jobs when resources become available, this is 

non-deterministic. 
• Hard to implement real-time or even near-real-time processing

• This is a workable solution but making it work loses many benefits 
of streaming data
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Scenario 2 – Start batch jobs that connect to streaming data sources

• In this scenario the data streams connect to jobs in the batch 
system directly. Streaming data all the way
－The batch system starts the jobs when resources are available
－These jobs must remain allocated for the duration of the 

experiment
－Only works if the data is streaming over a network – otherwise 

need to allocate specific nodes with custom hardware
－Needs an external orchestrator

• Which nodes are running what?
• Which data goes where?
• Starting, stopping, monitoring, recovery

－Unless running on a dedicated node the job has no control over 
what else is running on the node

• Reliability?
• Performance?

• This is a viable solution, but making it work efficiently requires 
sidelining the batch system except at initial startup
－It doesn’t meet the definition of batch processing
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Summary comparison of batch processing and stream processing
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Data Streaming as a disruptive model

• Instead of trying to force streaming data processing to conform to a pre-existing model, 
like batch processing, treat it as a disruptive model in its own right. 
－Approach followed by Amazon, Google, Netflix, etc.

• Key components:
－Flexible data integration: The ability to transport data in the format required, regardless of 

whether the data is structured or semi structured, direct or customized, static or changing
－Data inference: Make it easy to map data and control how it is processed
－Code engines: The ability to embed code to enrich and cleanse data, create alerts, and 

detect anomalies in stream in real time
－Live monitoring: Real-time visibility into data streams for monitoring behavior, identifying 

potential discrepancies, and debugging data records
－Pipeline transparency: Provides continuous views of data in motion and notifications that 

allow users to view incoming events, monitor throughput and latency, and identify errors in 
real time.
－Agility: The ability to dynamically expand or contract and migrate allocated resources.
－Support for heterogeneity: The ability to allocate a tailored resource unconstrained by 

predefined hardware choices
• How does it apply to science?
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Science use cases

Any good computing model is driven by use cases that present challenges that it must 
solve. Here are four to consider
1. Time critical workflows
2. Data driven workloads
3. Distributed data sources
4. Complementary data sources
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1) Time Critical Workflows

• Across a range of science programs, experiments follow time-critical use patterns
－Success of the science depends upon data being processed within a specified time after 

acquisition
－Examples:

• Real time data filtering
• Processing a data sample to inform instrument calibration stabilization
• Data quality monitoring
• Real time processing to 

－ Reduce data archive requirements – smart data reduction
－ Steer experiments – set run conditions based on last run
－ Provide input to AI/ML, inference engines, digital twin models

• The key features to guarantee success are
－timing of data delivery to compute resources
－timing and continuity of compute resource availability

• Uptime and quality of service 
－timing of real-time feedback delivery
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2) Data driven workload

• The scale of computing resource required for an experiment 
is driven by data rate and complexity
－NP and HEP:

• Processing time is a function of detector and event complexity as 
well as the science being studied

• Scale of compute resource needed can vary depending on data 
taking conditions
－ It is frequently hard to guess in advance (overestimates are as bad 

as underestimates)
－Light Sources:

• Data complexity and rate varies between beamlines and, for 
individual beamlines, from sample to sample

• Relatively simple sensors with high sample rates
－ Low complexity simplifies processing, but data rate is problematic

• Complex sensors like high-rate cameras
－ Data is complex AND data rates are high

• Key to success is an adaptive system that can expand or 
contract as the workload fluctuates.
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3) Distributed data sources – NP and HEP

• Very familiar to NP and HEP – detectors are composed 
of sub-detectors, that in turn are groupings of individual 
detector channels
－Data sources are spread over a volume of space
－Also fold in data from other sources, accelerator, 

beamline, etc.
• Typically, this is dealt with online by an “Event Builder” 

that combines data records from various detectors for 
the same interaction into an “event”
－This can be a serious bottleneck and affect data flow 

stability
• Streaming data in parallel to a computing resource 

allows deferral event building until the data is in the 
data center.
－Building can happen in parallel

• Key takeaway is that streaming data processing is a 
natural fit,  distributed is in the definition of streaming 
data
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3) Distributed data sources and streaming - generalized

• Event Building, on the previous slide, is an example of real time data sorting
－In the diagram below colored counters are sorted into boxes
－In Event Building the color represents the time that the data was taken, with counters from different 

data sources. The task is to sort data from the same time from different sources so they can be 
processed together

• An alternative is to use ML to recognize the ”color” and group by reference
－In this simple case ML is not really needed but much more complex sorts could be imagined that 

do
• Streaming data formats provide access to rich metadata that is ideal for enabling rapid real time 

sorting or selection of data of interest
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4) Complementary data sources

• In some fields observational or experimental data is 
combined from completely different but complementary 
sources
－NASA and NOAA combine satellite data with ground 

radar, wind gauges, temperature sensors
－Astronomy combines radio, optical and IR images
－Light sources use data from one beamline to calculate 

configuration settings to simultaneously study the same 
material in another beamline

• There is also interest in running simulation in real-time 
using models informed by complementary 
measurements
－Example, scan a sample to determine shape and 

structure, simulate interaction with beam using real shape 
and structure, compare with experiment in real time to 
inform next run
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Frameworks implementing streaming data models

• Streaming data is a hot topic – commercial and open-source solutions exist
－Amazon

• Kenesis - ingest, buffer, and process streaming data in real-time
－Apache

• Flume - simple and flexible architecture based on streaming data flows, aimed at log data
• Kafka - open-source distributed event streaming platform
• Flink - A framework and distributed processing engines for stateful computations over unbounded 

and bounded data streams. 
• Apex - batch and stream processing using Hadoop’s data-in-motion architecture by YARN.

－ASCR – several initiatives, for example research in streaming data reduction
－Also, highly tailored solutions from national labs, CERN, etc

• Question: Innovate or integrate?
－A little bit of both
－Third-party products are evolving
－Some likely never a good fit
－Perfection is the enemy of good enough
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Processing models

• Most of the solutions are fundamentally similar and based on a distributed parallel 
model 
－Event driven engines are networked by data pipelines
－Data between engines is “in flight” as much as possible
－Data lakes – unstructured “pools” of data

• Provide temporary buffering of data to rate match application components 
• Time sync streaming data to allow cross stream data queries – earlier slide on sorting

• Stream processing engines are runtime libraries which help developers write code to 
process streaming data, without dealing with lower-level streaming mechanics.

• There are two major types of processing engines.
－Compositional Engines
－Managed Declarative Engines
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Compositional Engines

• In compositional stream processing engines, 
developers define the Directed Acyclic Graph 
(DAG) in advance and then process the data. This 
may simplify code, but also means developers 
need to plan their architecture carefully to avoid 
inefficient processing.

• Challenges: Compositional stream processing are 
considered the “first generation” of stream 
processing and can be complex and difficult to 
manage.

• Examples: Compositional engines include 
Samza, Apex, and Apache Storm.

• Developer builds the application from a kit of parts 
according to a plan
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Declarative Engines

• Developers use declarative engines to chain 
stream processing functions. The engine 
calculates the DAG as it ingests the data. 
Developers can specify the DAG explicitly in 
their code, and the engine optimizes it on the 
fly.

• Challenges: While declarative engines are 
easier to manage, and have readily-available 
managed service options, they still require 
major investments in data engineering to set 
up the data pipeline, from source to eventual 
storage and analysis.

• Examples: Declarative engines include 
Apache Spark Streaming and Flink.

• The engine assembles the network based on 
incoming data or optimizes an existing net
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Streaming optimized hardware architecture

• The software architectures discussed in the last few slides 
allow the creation of managed streaming applications
－Developers provide code to plug into event driven engines
－Engines are assembled into an application using network 

graphs
－A management layer optimizes data flow and performance 

on the fly

• What sort of hardware architecture would optimally 
support these applications? 
－It must support

• Guaranteed uptime, performance and service quality
• Data flow optimization on the fly
• Applications of (somewhat) arbitrary scale on heterogenous 

hardware
• Integration of AI/ML and other data science techniques
• Integration of novel technologies (adapt to future needs)
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Disaggregation and reassembly

• Imagine a computing resource with all the right 
parts for a particular streaming application but 
not necessarily in the right configuration 

• What if we could disaggregate individual 
nodes into a network of parts and reassemble 
something that is a better match to our 
application?

• Technology roadmaps from silicon vendors 
show inter CPU and GPU networking with 
coherent memory is either coming or already 
here 

• This would allow adaptive tailoring of a 
hardware architecture to match a streaming 
application

• How do you reconfigure hardware in a running 
application?
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Data flow steering

• An adaptive dynamic architecture must be able to:
－Reroute data that is in flight when the system 

architecture reconfigures
－Allow remote data sources to be agnostic of the 

destination hardware configuration
－Provide robustness while preserving agility and 

performance
• IP based networking identifies hardware endpoints 

via IP addresses. Data is routed according to where
it needs to go

• A streaming data application routes data according 
to what kind of data it is and where it came from. 

• A low-level network protocol to implement this does 
not exist (yet) but can be emulated
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Prototype dynamic steering of streaming data

• The ESnet Jlab FPGA Accelerated 
Transport project is an example
－Streaming data format contains metadata 

describing the data
－Using standard IP based network all traffic 

is directed to an FPGA device
－Firmware modifies IP packet headers to 

reroute the data based on what kind of 
data it is and what kind of destination it 
should stream to

• Initial implementation has static translation 
tables to implement data distribution 
schemes
－Round robin, sorting by time or source

• Goal is dynamic intelligent steering

23



Why is Jefferson Lab giving this talk?

• We have many years of experience handling data from a diverse and sometimes rapidly 
changing set of experiments

• Nuclear physics experiments at JLab are transitioning to a streaming data acquisition 
model

• The EIC project, in partnership with BNL, will use streaming data acquisition
• We have real problems to solve, and it is of greatest benefit to the broad DOE science 

community to try to develop solutions that can be shared
• We now have ASCR funding for a follow-on project to EJFAT to extend towards the 

instrument at the data source end and closer to the silicon at the data center
• We have an LDRD to investigate multi-site workflows
• Partnerships with NERSC, BNL, and SLAC
－BNL for EIC but also NSLS-II
－SLAC for light source data
－NERSC for workflow transition between data centers
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Summary

• In this talk topics were outlined, and questions asked:
－Definition of streaming data

• Does it fit into existing computing models? Is something different needed?
－ The dominant data processing model for experimental science

• Does that model fit streaming data?
－Use of the batch model to process streaming data 

• Workable but not a good fit
• What models are a good fit?

－Data Streaming as a disruptive model
• How does it apply to science?
• Example use cases

－Software frameworks implementing streaming data models
－Streaming optimized hardware architecture

• How do you reconfigure hardware in a running application?
• Data flow steering

• Processing streaming data is a “hot topic” in industry, computer science research, as well as current 
and future trends in DOE funded science

• As with all “hot topics” the right balance must be found between innovation and implementation –
there’s a lot out there when you start to look!
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