
Software Assurance Tools at Indiana University:

A Journey into the
SWAMP

Rob Quick
Research Technologies
Manager High Throughput
Computing
Operations Officer - OSG
Operations Officer - SWAMP

Buffer Overflow Example
❖ Some people believe that buffer overflows are ancient

history, but…

❖ Failure of an important library to validate the length
field (as compared to the size of the actual message).

❖ The heartbeat protocol is supposed to echo back the data
sent in the request where the amount is given by the
payload length.

❖ Since the length field is not checked, memcpy can read
up to 64KB of memory.

B. Miller and E. Haymann

More Recently…

❖ February 17, 2017 a bug in Cloudflare's reverse proxies caused their edge servers to run
past the end of a buffer. This led to return of memory that contained private information
such as HTTP cookies, authentication tokens, HTTP POST bodies, and other sensitive data.

Top 10 Common Weakness Enumerations

❖ CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection')

❖ CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection')

❖ CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

❖ CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

❖ CWE-306 Missing Authentication for Critical Function

❖ CWE-862 Missing Authorization

❖ CWE-798 Use of Hard-coded Credentials

❖ CWE-311 Missing Encryption of Sensitive Data

❖ CWE-434 Unrestricted Upload of File with Dangerous Type

❖ CWE-807 Reliance on Untrusted Inputs in a Security Decision

http://cwe.mitre.org/top25/archive/2011/2011_cwe_sans_top25.html#Listing

B. Miller and E. Haymann

https://xkcd.com/327/

B. Miller and E. Haymann

B. Miller and E.
Haymann

Thinking Like an Attacker

Exploit: A manipulation of a
program’s internal state in a way
not anticipated by the
programmer.
Start at the user’s entry point: The attack
surface.
•Network input buffer
•Field in a form
•Line in an input file
•Environment variable
•Program option
•Entry in a database
•…

B. Miller and E. Haymann

SwA Lessons Learned from Heartbleed
❖ “Why Do Software Assurance Tools Have Problems Finding

Bugs Like Heartbleed?”

❖ James A. Kupsch and Barton P. Miller https://
continuousassurance.org/swamp/SWAMP-WP003-
Heartbleed.pdf

❖ Software of sufficient complexity cannot be successfully
analyzed.

❖ Software needs to be developed in such a way it can be assured.

❖ Early application of SwA framework helps achieve this.
V. Welch

Software Assurance Motivation
❖ The world we live in today is software-centric, introducing

significant risks to confidential data and physical resources

❖ Applications are leaving the protected enterprise network
environment and moving onto the web

❖ Anything with an outward face to the Internet is a entry point
for an attack

❖ Few developers are trained and equipped to build secure code

❖ Even those well equipped often utilize code developed by
others

V. Welch

The Tools

❖ Key assets in this battle are the software assessment
tools that can scan the program for defects(weaknesses).
However, using these tools comes with challenges:

❖ Each tool is good at finding some particular problem;
no tool is good at everything (or even most things).

❖ Configuring, maintaining, and using these tools can
be cumbersome, time consuming and tricky.

V. Welch

A Framework
❖ No single Software Assurance(SwA) tool is going to bridge the gap between

software and assured software.

❖ A software assurance (SwA) framework allows construction and
automation of SwA workflows.

❖ Our framework provides code analysis, result normalization and labeling,
result merging and integration, visualization, result evaluation and
annotation, and risk assessment.

❖ Aggregates, orchestrates and automates use of SwA tools rather than being
a tool itself.

❖ Should support use cases of software developers, SwA Tool developers,
SwA researchers, software users, and educators.

V. Welch

Welcome to the SWAMP
❖ A continuous assurance platform that enables significant improvements in the

quality of SwA tools while broadening adoption of SwA methodologies

❖ Consists of:

❖ 30(and growing) static analysis assessment tools

❖ State-of-the-art assessment results viewer

❖ “Plumbing” that simplifies access to SwA tools

❖ Provides a hub for software assurance projects

❖ Supports managed access to tools, packages and results

❖ Maintains confidentiality of software and results at the discretion of the
user

V. Welch

Vision of Continuous Assurance

❖ Continuous integration (CI) is the practice, in software
engineering, of merging all developer working copies
with a shared mainline several times a day.

❖ Continuous Assurance (CoA) takes the software
engineering practice of Continuous Integration to a new
level. CoA incorporates SwA tools into the frequent
process of building and testing the software throughout
its life cycle.

V. Welch

What is the SWAMP?

❖ The Software Assurance Marketplace (SWAMP) is a
service that provides continuous software assurance
capabilities to developers and researchers.

❖ This no-cost code analysis service is open to the public.
Let the SWAMP help you to build better, safer, and more
secure code today!

The SWAMP
❖ While proven useful for SwA there was a trust gap between

developers and the Morgridge Institute for Research run,
Department of Homeland Security funded facility

❖ The SWAMP-in-a-box (SiB) framework allows local administrators to
host a Software Assurance framework

❖ Though some commercial tools and power are sacrificed by using
local instances

❖ Both SWAMP and SiB provide strong sandboxing

❖ VM created for the assessment. Upon completion the VM is
destroyed leaving only the assessment report

SWAMP
❖ C/C++

❖ Java source

❖ Java bytecode

❖ Python

❖ Ruby

❖ PHP

❖ Javascript

❖ HTML

❖ CSS

❖ XML

SiB

Languages Supported

❖ C/C++

❖ Java source

❖ Java bytecode

❖ Python

❖ Ruby

❖ Coming Soon:

❖ PHP

❖ Javascript

SWAMP
❖ Open tools

❖ Android lint

❖ Bandit

❖ Brakeman

❖ checkstyle

❖ Clang Static
Analyzer

❖ cppcheck

❖ CSS Lint

❖ Dawn

❖ error-prone

❖ ESLint

SiB

Tools Supported

❖ Bandit

❖ Brakeman

❖ checkstyle

❖ Clang Static Analyzer

❖ cppcheck

❖ Dawn

❖ error-prone

❖ Findbugs

❖ Flake8

❖ GCC

❖ OWASP Dependency Check

❖ PMD

❖ Pylint

❖ Findbugs

❖ Flake8

❖ Flow

❖ GCC

❖ HTML Tidy

❖ JSHint

❖ OWASP Dependency
Check

❖ PHPMD

❖ PHP_CodeSniffer

❖ PMD

❖ Pylint

❖ Reek

❖ Ruby-lint

❖ Retire.js

❖ RevealDroid

❖ RuboCop

❖ ruby-lint

❖ XML Lint

❖ Commercial tools

❖ GrammaTech
CodeSonar

❖ Parasoft C/C++test

❖ Parasoft Jtest

SWAMP
❖ Android

❖ CentOS Linux 5 32-bit and 64-bit

❖ CentOS Linux 6 32-bit and 64-bit

❖ Debian Linux

❖ Fedora Linux

❖ Red Hat Enterprise Linux 6 32-bit and 64-bit

❖ Scientific Linux 5 32-bit and 64-bit

❖ Scientific Linux 6 32-bit and 64-bit

❖ Ubuntu Linux

❖ Upcoming:

❖ Mac OS X

❖ Microsoft Windows

SiB

Platforms Supported

❖ Ubuntu Linux

❖ Upcoming:

❖ Mac OS X

❖ Microsoft Windows

http://siab.grid.iu.edu/

Test Instance
❖ Questions:

❖ Is this useful to IU based coders?

❖ Can they be convinced to start SwA at the onset of a project?

❖ What are the barriers to adopting SwA policy?

❖ How does it perform?

❖ If this becomes a production facility what resources will need to be
allocated to it?

❖ How much effort does it take to support a SiB instance?

❖ What are the bugs in the framework?

❖ How does SiB compare to SWAMP?

❖ SWAMP Website: https://continuousassurance.org/

❖ SiB Info: https://continuousassurance.org/swamp-in-a-box/

❖ Von’s full slide set: http://www.vonwelch.com/pres/
SWAMP-Regenstrief-Sep-2014.pdf

❖ Bart’s and Elisa’s full slide set: https://
static1.squarespace.com/static/5047a5a6e4b0dcecada15549/
t/54071f4ce4b00e19c7ef11c9/1409752908265/Miller-
Heymann-NSF-2014.pdf

❖ SWAMP-in-a-Box git repo https://github.com/mirswamp/
deployment

https://continuousassurance.org/
https://continuousassurance.org/swamp-in-a-box/
http://www.vonwelch.com/pres/SWAMP-Regenstrief-Sep-2014.pdf
http://www.vonwelch.com/pres/SWAMP-Regenstrief-Sep-2014.pdf
http://www.vonwelch.com/pres/SWAMP-Regenstrief-Sep-2014.pdf
https://static1.squarespace.com/static/5047a5a6e4b0dcecada15549/t/54071f4ce4b00e19c7ef11c9/1409752908265/Miller-Heymann-NSF-2014.pdf
https://static1.squarespace.com/static/5047a5a6e4b0dcecada15549/t/54071f4ce4b00e19c7ef11c9/1409752908265/Miller-Heymann-NSF-2014.pdf
https://static1.squarespace.com/static/5047a5a6e4b0dcecada15549/t/54071f4ce4b00e19c7ef11c9/1409752908265/Miller-Heymann-NSF-2014.pdf
https://static1.squarespace.com/static/5047a5a6e4b0dcecada15549/t/54071f4ce4b00e19c7ef11c9/1409752908265/Miller-Heymann-NSF-2014.pdf
https://github.com/mirswamp/deployment
https://github.com/mirswamp/deployment

Now, go use SWAMP or SiB and
give us your feedback!!!

https://github.com/mirswamp/
deployment

https://github.com/mirswamp/deployment
https://github.com/mirswamp/deployment

SwA WG in WISE?

❖ Gauging interest from those attending today.

❖ Proposal of working session on SwA

❖ Bring code and we’ll do live assessments

❖ Talk about what to do with the results

Additional Mitigation Slides
from B. Miller and E. Haymann

