

National White Rabbit Network

Josef Vojtech, Vladimir Smotlacha CESNET Czech Republic

> SIG-TFN Amsterdam

October 16 -17, 2024

- **CZ Infrastructure for Time and Frequency CITAF**
- **Time Distribution in CESNET Network 2024**
- National White Rabbit Network

CITAF Czech Infrastructure for Time and Frequency

CITAF 🔆

- To be a national platform for cooperation in research and development of methods of time and frequency transmission in optical networks;
- To establish a permanent national optical infrastructure for the transmission of time and frequency and interconnect it to the follow-up European infrastructure;
- To support joint publishing activities of partners and cooperation in national and international projects and grants;
- Present the results of cooperation and develop an awareness of the possibilities and use of the distribution of very accurate time and stable frequency.

CITAF has currently 6 partners

- three institutes
- two faculties
- CESNET

http://citaf.org

Time Distribution in CESNET Network - 2024

Time and Frequency Service

Accurate White Rabbit service in CESNET network (2024)

- Service available in 6 nodes at university or research institute
- WR-LEN are beeing replaced by WRS technology
- Operate a reliable distributed WR system is a challenge
 - monitoring
 - resilience

Optical network infrastructure

- Shared with data services
- Bidirectional transfer over dedicated channel in commercial DWDM
- Bidirectional amplifiers in telecom huts

NATIONAL WHITE RABBIT NETWORK

WRS modes

Standard WRS

- https://white-rabbit.web.cern.ch/
- Modes: BC (boundary clock), GM (grand-master), FR (free running)
- Modes are configurable but fall down to FR in case of reference issue
 - Sometimes do not return back to BC / GM difficult to reproduce

No possibility to switch from GM to BC in case of RF signal fail

- No direct indication of mode or mode change (i.e. LED change)
 - Mode and other running parameters accessible by SNMP

White Rabbit Switch

Several issues of standard WRS that complicate use for 24/7 service or in large heterogeneous and multidomain setup:

- Only one port port might be configured as slave
- No possibility to switch from GM to BC in case of RF signal fail
 - Box requires reconfiguration in case of lost reference
- Identification of network failure requires active monitoring
- SFP calibration parameters tied with #PN
 - Impossible to calibrate more SFP of the same type

Modernization of CESNET Optical Network

In 2024 started a large national project aimed at modernization of CESNET optical network

Sub-goal: Infrastructure for accurate time distribution

Parameters White Rabbit Network

20 Points-of-Presence with WR switch

including WR PoPs in neighboring countries: AT (Vienna), Poland (Cieszyn), SK (Bratislava)

Advanced WR boxes

- multiple switchable references
- redundant power supply
- Reserved bandwidth (move to "near" L-band)
- Dedicated bidirectional amplifiers
- Two independent sources of accurate time traceable to UTC(TP)
 H-masers in Cesnet (Prague) and UPT (Brno)

White Rabbit Network

White Rabbit with Multi-source Reference

WR boxes with several reference inputs

- Specified priority of inputs (SFP ports and RF)
- Holdover mode with defined duration
- Automatic switching to another input in case of signal failure
- Recovery once higher priority signal is available again
- Switching as fast as possible
 - No box with immediate switching yet available ??

WR-Z16

Example: WR-Z16 from Safran/ SevenSolutions

- two reference SFP ports
- 1PPS / 10 MHz inputs
- input switching takes tens of seconds

Outline cont.

Design Considerations

- Spectrum shared among DATA, COF and WR
- WR regeneration or amplification
- Common EDFAs for T and F or distinct
- Synchronisation and Quantum

Monitoring

- White Rabbit
- Bidi EDFAs
- Coherent Optical Frequency

Coherent Frequency Transfers

Shared Spectrum

- Fibre infrastructure 5800 km approx., coherent 100-400Gbps per lambda
- For time and frequency dedicated all-optical bidirectional bandwidth reserved (skipping telco equipment)
- 120 pcs. of OADMs deployed mainly in 2021
- Dual window OADMs installed: 46-39ch and 9-6 ch
- COF hannels 44+46, ready for ch 7

16

- One line with 1458nm COF transfer (Ca+ clocks)
- Bidi EDFAs used to compensate losses (cca 28 pcs. now)

Multi-service TF Infrastructure

Dual band OADMs

cesnet Shared Amplification between COF and WR

- Established shared channel 2015
- 308 km, 5 and later 6 bidiEDFAs
- Possible however.....
- Noise accumulates in bidi channel fast
 - COF lower OSNR is acceptable
 - WR need decent OSNR

Multiple T Transfers - Benefits

Multiple transfers in single fibre

Michal Špaček et al. "System for continuous evaluation of optical path asymmetry"; <u>https://doi.org/10.1117/12.2678936</u> Line calibration described by E. Dierikx and Y. Xie, White Rabbit Good Practice Guide, May 2019

TF and Quantum

- Parallel transfer doable but....
- WR relativelly strong signals
 - Q channel 1550 nm spont. Raman photons
 - Q channel 1310 nm
 - 1.6 times short reach
 - 90km instead 150km

MONITORING

Goals

- Monitoring and control of bidi EDFAs (1600km already in operation)
- Monitoring of complete WR network status
- Monitoring of COF transfer status
- Check for failures and network changes

Integration with currently deployed monitoring solution

- Grafana
- Victoria Metrics
- Telegraf

Centralized dashboard for both Open HW and Z16 variants of the WR Switch

White Rabbits Monitoring

Open Hardware WRS

- Data collection through SNMP
- Directly using SNMP plugin in Telegraf

WRS-Z16

- Data collection through REST API
- Python script feeding data into Telegraf
- Acquired data mapped to corresponding WRS values to ensure full compatibility

6					Q Sea	ich ar fum	r kiu	EE crest-k					+ -	0	1 24	4
Home > Dast	nboards > V	White Rabbit	> Overview	合 :	4			all Add -	6	0	O Las	t 6 hours	- 9	1 0	Ê.÷.	1
Switch uptime																
BTD shak tunas	22:00	22:30	23:00	33.3	0	00.00	00:30	01:00	01:30	02	00	02:30	03	00	03.3	ND.
PriP clock types									_					_		
																Ī
													_			
A						1. Alexandre						10.24				
- BC - CM	22:00	22:30	21:00	23-3	0	00:00	00.00	01:00	01:30	02	90	02:30	D	100	63.3	30

White Rabbits Monitoring

Collected data

- Clock type
- WR status
- SFP link status
- SFP Rx and Tx power
- SFP temperature
- PTP round trip time

BidiAmplifiers Monitoring

Data acquisition protocols

SNMPv2/3 – many data from optical layer & system SSH – some system data by Ansible playbooks

• Data storage

VictoriaMetrics – lightwave powerfull time series database: possitive experience (6 months ~

436 M datapoints; 59 MB space on disk

for (optical power levels, attenuations, wavelengths, ...)

Data view

CLManager – in-house developed CMS for CzechLight boxes Grafana – interactive, powerfull and highly customizable dashboard system

COF Transfer Monitoring

- Evaluation of beatnote signal at RLS
- Link Quality Index (LQI) proposed
- The goal of LQI is to determine the state of the link before undesired lasing or transfer drop emerge.
- Used for balancing of gain of EDFA amplifiers cascade.

M. Slapak at al: Stabilization of super coherent frequency transfers via amplifier cascade balancing. Oct 2024 <u>https://doi.org/10.1016/j.yofte.2024.103910</u>

We are open and looking for cooperation and experience Exchange. Thank You very much for kind attention! Questions? josef.vojtech@cesnet.cz

cesnet Amplification vs. Regeneration

Left maximal time interval error (MTIE), right time deviation (TDEV), 1570 nm band, ch 8+9, **three 100km** spans, 2× amplified by Bi-di EDFA

J. Vojtech et al., "Long Haul Single Fiber Reamplified-Reshaped White Rabbit Transmission," 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS) doi: 10.1109/EFTF/IFCS52194.2021.9604245.

Amplification vs. Regeneration

Left maximal time interval error (MTIE), right time deviation (TDEV), 1570 nm band, ch 8+9, **three 100km** spans, 2× 2R speed and protocol agnostic **regenerator**

J. Vojtech et al., "Long Haul Single Fiber Reamplified-Reshaped White Rabbit Transmission," 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS) doi: 10.1109/EFTF/IFCS52194.2021.9604245.