

61-139 Poznan ul. Jana Pawła II 10 phone: (+48 61) 858-20-01 fax: (+48 61) 852-59-54 office@man.poznan.pl www.psnc.pl

Pathfinder Update

Krzysztof Turza

1st SIG-TFN meeting Amsterdam, Netherlands 16-17.10.2024

Pathfinder - Deployment and First Results

Agenda

- Brief Recap
- General Overview
- > Multiple Signals in Single Fiber
- Transmission Equipment
- First Result
- Installation Tips

Brief Recap

1111

© Poznan Supercomputing and Networking Center

Geographical Overview

2 dark fibres

Overall fibre length:

~690 km

(270 km in Poland; Pionier/PSNC) (420 km in Germany; Geant)

10 ILA points

(5 in Poland) (5 in Germany)

The longest section between ILAs:

106,7 km / 22,6 dB

Monitoring Snapshot

C-TFN pathfinder PTB-PSNC

© Poznan Supercomputing and Networking Center

Three signals in a single fiber (2 x OC, T&RF)

© Poznan Supercomputing and Networking Center

Multiple signals in a single fiber? How is this possible? ⁽¹⁾

- A. Wavelength Division Multiplexing (CWDM/DWDM)
- The method very well known for many years. Individual signals can be demuliplexed (separated) with appropriate filters.
- In pathfinder, WDM is used to separate management channels from T/F signals (CWDM method, at each node) and ELSTAB system signals from OC signals (at the ends of the link).

- No negative effect was observed when ELSTAB and OC signals are separated by only 100 GHz of the optical spectrum
- From a practical point of view, the easiest option is to buy filters with a 100 GHz grid (or wider: 400 GHz, 800 GHz).
- Transmitted signals would allow using a 50 GHz or even 25 GHz grid separation. However, the purchase of such filters is VERY expensive - there is no economic justification.

B. Optical spectrum scanning

- We assume that the OC signals are so close to each other that separating them with optical filters is not technically feasible (at a distance closer than the width of a single WDM channel).
- Adjusting to the appropriate optical frequency (locking the local laser to the remote one) is done by scanning the optical spectrum (analogous to radio).
- Is this something new? NO, but there are some challenges:
 - How to lock to the correct OC signal?
 - How to do it automatically, without human intervention?
 - How not to interrupt the already operational transmissions during the scanning process?

... How to do it right without additional problems? The answer how it was done in pathfinder on the next slides

How is this solved in pathfinder link?

- The RLS's used in the pathfinder (manufactured by PSNC) allow the scanning bandwidth to be narrowed down and center to a selected optical spectrum in software. This makes it possible to lock to a selected OC signal without causing interference to other signals.
- In the current hardware configuration, the safe optical distance between OC signals should be >2GHz. In Pathfinder, this is currently ~2.4GHz.
- In the future, it will be possible to reduce this distance to a few hundred MHz. However, this requires to develope additional hardware and software features to guarantee security/continuity of transmission.

PSNC's Laser Station (RLS)

NOTE: terminology is not equivalent to Exail's solution.

- Dedicated to building connections in a tree topology
- The UL (UpLink) port is used to connect to a reference signal (reference laser) or a previous RLS station (n-1)
- The UL port is equipped with a polarization controller that maintains the optimal polarity of the input signal continuously (no dead time for polarization correction, no interruptions in transmission)
- Automatic signal relocking after beatnote loss
- Software selection of the scanning range and center frequency of the internal laser

PSNC's Laser Station (RLS)

NOTE: terminology is not equivalent to Exail's solution.

- The 3 DL (Down Links) ports allow flexible configuration according to user needs. They can be used for:
 - connecting by a stabilized link to another RLS station (n+1),
 - a stabilized link to a remote end terminal,
 - local unstabilized or stabilized connection using the internal interferometer and external stabilization system (OUT and PD ports available).
 - a return connection to the RLS (n-1) station for monitoring residual phase changes in the fiber.
- Noise monitoring with Low and High Frequency Noise separation (helpful in optimizing EDAFs' Gains).
 It is possible to automatically search for optimal gains based on LF and HF - an algorithm developed and described by the AGH team: https://opg.optica.org/oe/fulltext.cfm?uri=oe-31-8-12083&id=528573

Pathfinder Equipment – RLS⁽³⁾

PSNC's Laser Station (RLS)

Management system: SNMP, WEB-gui, CLI

PSIKC

Pathfinder Equipment – RLS⁽⁴⁾

Pathfinder Equipment – RLS⁽⁴⁾

RLS Compatibility

Interoperability of Exail's RLSs and those used in the pathfinder link (developed by the PSNC/AGH group) was presented at the recent EFTF.

© Poznan Supercomputing and Networking Center

Pathfinder Equipment – bidirectional EDFA⁽¹⁾

Optical Spectrum

Pathfinder Equipment – bidirectional EDFA ⁽²⁾

Technical Description

- EDFA bi-directional amplifier
 - Amplifier operating spectrum limited to eight channels (8skip0 filter). In pathfider channels from #39 to #46).
 - Gain range up to 24 dB
 - True gain (not pump power) control (also for non-modulated signals - e.g. OC) - gain is independent on power and/or number on signals launched
- Management
 - Management SNMP, WEB-gui, CLI
 - Management "in fibre" is implemented using a pair of CWDM channels in the L-band 1570/1590 nm (1Gbps).
 - Commercial Layer 3 switch is built into the amplifier (simple routing protocols can be configured). Management of the switch is independent of the rest of the amplifier.

Pathfinder Equipment – ELSTAB (OSTT)

Practical information

 System for distributing time (1PPS) and frequency (10 MHz). Well documented and commercially available. Frequency transfer stability: ADEV < 3×10⁻¹³@1s, < 3×10⁻¹⁷@10⁵s https://piktime.com/offer/ostt-4/

What does the patfinder make possible?

- Polish Optical Clocks (KL FAMO) added to network of European \geq comparisons
- Possibility of international cooperation with institutions \geq affiliated within the Polish NLPQT project

- \geq Link to UTC laboratories (UTC-PL, UTC-AOS)
- Signals for VLBI and LOFAR stations \triangleright (3 in Poland)
- \geq Linking Lithuania into **European T/F network**

Results ⁽¹⁾

Stability of the link PSNC->PTB->PSNC (two times 690 km)

Results ⁽²⁾

Noise on Sunday vs. the rest of the week

Frequency Difference (Zero-based) Averaging window: Per-pixel

Results ⁽³⁾

Noise on Sunday vs. the rest of the week

Frequency Difference Averaging window: Per-pixel

Trace	Sample Interval	Duration
PSNC -> PTB -> PSNC 10-17.10 (2 x 690 km)	1 s	6d 19h 35m 16s

Results ⁽⁴⁾

PTB -> PSNC -> KL FAMO connection (>1000 km)

Results ⁽⁵⁾

PTB -> PSNC -> KL FAMO + clean up

Currently, the ultra-stable optical frequency signal being delivered from PTB to KL FAMO (Toruń) is used for final evaluation of cavity-stabilized lasers and clean-up systems, which is an initial step towards future comparison between German and Polish optical clocks.

Residual link noise, cavity drifts and clean-up bandwidth are being characterized and optimized.

Results ⁽⁶⁾

PTB -> PSNC -> KL FAMO + clean up

clean up laser@1542 nm

local "flywheel" 10 cm cavity @1542 nm

new ultra-stable lasers in construction

optical frequency comb for fundamental physics applications

Hg optical clock lines ultra-stable lasers @1062 and 908 nm

What we have learned by installing pathfinder?

- Transmission of OC signals over a distance of ~700km without intermediate RLS is possible. It is also possible to transmit more than one OC signal in a single WDM channel (this has pros and cons).
- Automatic gain control is a MUST! Thanks to this, there is full freedom to turn on and off individual services. Link optimization is also MUCH simpler - correcting the gain of one amplifier does not affect the performance of the others.
- Noise monitoring in the end devices (RLSs) significantly helps optimizing amplifier gains (theoretical calculations are not always optimal). It also helps to daily link monitoring.
- Transmitting OC and Elstab signals in a single fiber requires taking into account the difference in optical budgets of ~50 dB vs ~25 dB (more demanding are Elstab or White Rabbit than "OC" systems).
- "In fiber" management strongly simplifies access to all devices.

What we have learned by installing pathfinder?

- T/F link can be operated 24/7 (continuous OC signal polarization control needed) and can be ready to use at any time.
- Independent monitoring in the feedback link (by K+K) is useful it shows acoustic noise caused by "human activity", BUT problems with the comparator itself are not uncommon - note with proper interpretation of events.

 Cycleslips are rare in Pathfinder (we didn't observe any but we had a lot of problems with the comparator so we might have missed something). From a conservative standpoint, we estimate that cycleslips occur once a week.

Poznan Supercomputing and Networking Center

61-139 Poznan ul. Jana Pawła II 10 phone: (+48 61) 858-20-01 fax: (+48 61) 852-59-54 office@man.poznan.pl www.psnc.pl

