Monitoring metadata refresh

The SP Proxy (https://login.terena.org/wayf) uses metadata that is generated by another host: https://pioneer.terena.org/mr.
This host polls various metadata sources from cron, using SimpleSAMLphp's metarefresh module.

The reason for this dual VM is that the metarefresh module sometimes would get stuck validating XML signatures, and then the SP proxy would also hang,
which sucks.

This behaviour has been fixed, but the dual VM set-up is still a good idea, so it will stay this way.

When pioneer.terena.org/mr has finished, it uses rsync to synchronise the directory that holds the metadata to login.terena.org/wayf.
pioneer.terena.org/mr is currently configured to poll a couple of dozen URLs for metadata.

This process works, and it has been improved so that when there are errors with the refreshing/polling, the previous/cached metadata is re-used, instead
of it being nuked.

This is already an improvement, and when it happens, an error is logged, however this requires an administrator to look at the log files, which does not
happen.

So, the error goes unnoticed, and eventually the cached metadata will expire, because it has a set lifetime embedded.

At this stage IdPs will start to disappear from the metadata until it's completely empty, until there are no valid entries any more and the complete set will
have disappeared.

At this point the service will be unavailable.

During the SimpleSAMLphp hackathon on 27 May 2015 an attempt has been made to add some form of monitoring capabilities to metarefresh.
This can be done in many ways, however not all were considered:

® Write any custom Nagios checks and let the Nagios server poll the URLs. This option was rejected because the network checks should be done
from the same host that does the metarefresh process. Otherwise subtle changes in network access lists, firewall, OS and library versions might
yield different results.

® Run separate Nagios checks through/from the same host that does the metarefresh process. This approach was rejected because with dozens of
URLs, any non-responsive URLs would significantly increase the time it takes to run the Nagios plugin.

In the end the follow approach was chosen. The metarefresh process already logs all possible errors, and also stores any Conditional GET values for each
URL in a state file.

By slightly adapting the metarefresh module, it was possible to create an additional state file that holds error information about the URL.

This state file is then parsed by Nagios through check_by_ssh. This is not the best approach security wise, and could later be improved so that the data is
exposed over HTTPS and protected by supplying a secret variable.

Several issues were encountered:

® When the metarefresh config is changed, for example URLs are added/deleted/changed, the Nagios configuration needs to be changed as well,
the Nagios process needs to be reloaded, and a forced check of the services needs to be scheduled.

® The name of the service would be the src URL, but this contains lots of ‘illegal’ characters as far a Nagios is concerned. A first attempt to fix work
around this was by stripping the path from the URL. This means that the name would be just the base URL, which makes sense to admin, but
does not (yet?) contain illegal characters. However, this turned out to be a problem because metadata is polled from several sources that reside
on the same base URL (http://my.org/saml/idp1,http://my.org/saml/idp2, etc). The base URL is the same in this case, which is also not allowed by
Nagios. The final work-around was to append a hash of the URL to the base URL. This way it is easy to distinguish what domain/IdP has an
issue, and the string will be unique for each URL

® Because the way metarefresh is implemented, the URL state file is being overwritten for each URL, and only at the end will it yield the full status
array. This causes a race condition with the Nagios check, it can happen that the Nagios check for a specific URL happens during the
metarefresh, when there is no status information yet on that URL. A work-around was implemented by scheduling a simple cp command at the
end of metarefresh cronjob. This will make sure the state file will always have all the URLs.

Because the logic of metarefresh is used, the same errors can be detected. This comes down to any connection errors, and all HTTP response codes
other than 200 (OK) and 304 (Not Modified).

A few basic tests were done to confirm the functionality, such as having a URL return an HTTP 500 error:

http://my.org/saml/idp1,
http://my.org/saml/idp2)

pioneer Mailgueue [BRI 2015-05-27 16:18:16 8d 9h 46m 365 1/4 OK: Mail queue is empty

Rool partition [OK |2015-05-27 16:18:16 1d 15h 33m 455 1/4 DISK OK - free space: / 3929 MB (58% inode=79%)
SMTP [BRT 2015-05-27 16:18:15 8d 9h 41m 208 1/4 SMTP OK - 0.051 sec. response time.
SSH 0K |2015-05-27 16:19:15 0d Oh 44m 185 1/4 S5H OK - OpenSSH_5.9p1+sfipfilecontrol- vl 3+ dapPublicKeys-v0.3. 20 Debian-Subuntuterena3 (protocol 2.0)
Swap space [BK 2015-05-27 16:20:15 0d Th 13m 185 1/4 SWAP OK - 66% free (640 MB out of 975 MB)
X509 cert signature algorithm (HTTPS cver IPv6) [OK | 2015-05-27 16:18:15 8d %h 45m 9s 4 SSL_CERT OK - cerlificate signalure is sha256WithRSAEncryption
X509 cert signature algorithm (SMTP-TLS over IPvB) [ORI 2015-05-27 16:18:15 8d Sh 41m 255 1/4 SSL_CERT OK - certificate signature is yption
X500 cert validity (SMTP-TLS) OK 2015-05-27 16:18:15 8d %h 41m 585 1/4 (OK - Certificate will expire on 11/27/2017 23:59.
http://eduid.at/. /e23362b0e0e054aTE98 1bSb 1559025 [OR 2015-05-27 16:10:15 0d th 13m 185 174 OK - Received HTTP 304 (Not Modified) - attempting to re-use cached metadata
Jfidp myifam.upm.my/.i8ecaed0b3s8c]4ae8457¢3d305db7bb [OK " 2015-05-27 16:10:15 0d Th 13m 185 1/4 OK - Received HTTP 304 (Not Modified) - attempting to re-use cached metadata
hitp://md.test.eid?.sel.. /a754336080ea18747a8c2563264d%dba [BK 2015-05-27 16:10:15 0d Th 13m 185 1/4 oK
Dttp://md. unitedid. org/.. /2040689b1e256c678698b5fdc4abdBeh [OK 2015-05-27 16:10:15 0d 1h 13m 185 1/4 oK
hitp:/Awayt.up.pti.. /34d52063633016021791768dSb0c03 [OR 2015-05-27 16:10:15 0d 1h 13m 185 1/4 oK
hitp:/Awur. protectnetwork org/.../d 18338097 ed238aMB2565f5ad74fbbf OK | 2015-05-27 16:08:15 0d Th 14m 185 14 OK - Recsived HTTP 304 (Not Modified) - attempting to re-use cached metadata
hitps:/icajones lerena.org/...iclBa3f724239639bf915 173df cofffl [BK 2015-05-27 16:10:15 0d 0h 43m 185 1/4 OK
Dttps:/igidp.geant net/. . /4961836103fead 12aladec2 30b98debS [BK 2015-05-27 16:09:15 0d 1h 14m 185 1/4 oK
https:/idp. cedia.org.ect.../Tf307827ba51ebe5c291311a63a2b57T (ORI 2015-05-27 16:09:15 0d 1h 14m 185 14 OK - Received HTTP 304 (Mot Modified) - attempting to re-use cached metadata
hitps:/iidp dfn-cert de/.. idffa7ce40d511c9518155cabadB20884 0K |2015-05-27 16:08:15 0d 1h 14m 185 1/4 oK
hitps:/iidp.ens-cachan. fi/... /7 fE9fafBbcafa8025b2aa638b7dbBe [BK] 2015-05-27 16:09:15 0d Th 14m 185 1/4 OK
hitps:/iidp. marvan.mal.../lefecS8dfaT bidB0bEI1328edaTess 0K |2015-05-27 16:0%:15 0d Th 14m 185 1/4 oK
hitps:/idp renata. edu.col. . /eadd513ac0defbE07e 12037819006 [BRT 2015-05-27 16:09:15 0d 1h 14m 185 1/4 oK
https:/iif iuce. ac. V.. 19c48BIdfSfaaf1e8efl HBST60aab2 OK 2015-05-27 16:09:15 0d 1h 14m 185 1/4 oK
https: laife lanet vi._./agSfE08CB5 3dcIfaad17441fB83acd4 [0 2015-05-27 16:09:15 0d th 14m 185 174 OK - Received HTTP 304 (Not Modified) - attempting to re-use cached metadata
https:/ilogin.iamres. amres.ac.rs/.../aS4fcTa8fa1567 1c3cada0f9638be3St DK 2015-05-27 16:08:15 0d 1h33m 155 14 oK
hitps:/flogin terena.orgl./add0aa33e5963c540802b82Eb1d9f58 [ORIT 2015-05-27 16:08:15 0d 1h31m 50s 1/4 oK
https:#ogin terena.org/.. FB2c1fcbbBa060bT 262be4bd 17be670 [OK 2015-05-27 16:08:15 0d 1h 30m 255 1/4 oK
https:/login vu v ../173d8f5afd12fcabb7743cBdadd374ba [BR 2015-05-27 16:08:15 0d 1h 28m 0s 114 OK
https:iopenidp feide.no/__./11bf29579879267b38achc0d 1 1745bf 0K |2015-05-27 16:08:15 0d Th27m 365 1/4 oK
hitps:/irctsaai-rr.feen pti... /edecda7b732153802b7d1d0 120015230 [BRI 2015-05-27 16:08:15 0d Th40m 175 1/4 oK
Dhttps:isafid-idp.c4.csir.co.zal. Jha3ad3Tfocada7Bc644be51954e0d6de OK | 2015-05-27 16:08:15 0d 1h 38m 525 1/4 oK
hitps:/isp.israqrid.org.ill.. f46a256981dfodBec1 02cd2e 58946615 [ORT 2015-05-27 16:08:15 0d 1h 37m 285 1/4 oK
CRITICAL - No response (Error fetching
https:/tasman.terena.orgl./52c894999 1cafdal897a34 1750965 2015-05-27 16:08:15 0d Th36m 3s 414 “hitps://tasman terena.org/simplesamlisami2/idpimeladata.php'file_get_contents(https:/ftasman terena.org/simplesar
failed to open stream: HTTP re-quest failed! HTTP/1.0 500 Internal Server Error
htps refeds. org/...i460208c60f36834a [2015-05-27 16:08:15 0d Th 34m 385 1/4 OK

Based on the experiences, some recommendations:

® Using the current metarefresh module has it's drawbacks. Notably, the race condition that exists in writing the state file is not a problem for the
Conditional-GET state, is a real problem for the Nagios state file, and it not easy to fix. So it will be worth doing separate checks.
® blah

	Monitoring metadata refresh

